Skip to main content
Log in

Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

To improve the properties of microalgae as sources for biodiesel production, three microalgae (Tetraselmis subcordiformis SHOU-S05, Nannochloropsis oculata SHOU-S14 and Pavlova viridis SHOU-S16) were cultured in media supplemented with different amounts of nitrogen (0, 0.22, 0.44, 0.88 and 1.76 mmol N·L−1). The growth, total lipid contents, lipid classes and fatty acid profiles of the three microalgae were assayed after 10 days of cultivation. The results indicated that the specific growth rates of T. subcordiformis, N. oculata and P. viridis were lowest (0.014, 0.033 and 0.018, respectively) in the treatments without nitrogen supplementation and increased significantly with increasing nitrogen supplementation. The microalgae treated with 0.22 mmol N·L−1 had the highest total lipid contents, which were 29.77, 35.85 and 32.10 % in T. subcordiformis, N. oculata and P. viridis, respectively. The total lipid contents as well as the proportions of neutral lipid in the three microalgae decreased significantly with increasing nitrogen supplementation between 0.22 and 1.76 mmol N·L−1. The fatty acid profiles of the three microalgae were significantly different. The obvious characteristic of the fatty acid profile of T. subcordiformis was a high amount (17.68–22.22 %) of 18:3n3. However, EPA (C20:5n3) and C16 fatty acids were significantly high in N. oculata and P. viridis, respectively. N. oculata and P. viridis accumulated more 16-carbon fatty acids and fewer polyunsaturated fatty acids in nitrogen-limited media. It is therefore suggested that a limited nitrogen treatment is effective for improving the properties of P. viridis and N. oculata as sources for biodiesel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antolín G, Tinaut FV, Briceño Y, Castaño V, Pérez C, Ramírez AI (2002) Optimisation of biodiesel production by sunflower oil transesterification. Bioresour Technol 83:111–114

    Article  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Physiol Pharm 37:911–917

    Article  CAS  Google Scholar 

  • Borges L, Morón-Villarreyes JA, Montes D’Oca MG, Abreu PC (2011) Effects of flocculants on lipid extraction and fatty acid composition of the microalgae Nannochloropsis oculata and Thalassiosira weissflogii. Biomass Bioenergy 35:4449–4454

    Article  CAS  Google Scholar 

  • Borowitzka MA (1988) Algal growth media and sources of algal cultures. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 454–465

    Google Scholar 

  • Botham PA, Ratledge C (1979) A biochemical explanation for lipid accumulation in Candida 107 and other oleaginous microorganisms. J Gen Microbiol 114:361–375

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Johns MR (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J Appl Phycol 3:203–209

    Article  CAS  Google Scholar 

  • Cheng YX, Jiang XM, Chen XH, Huang XH, Huang XX, Zhou ZG, Zhang DM, Hou ZE, Chen KJ (2005) Live food cultivation. China Agriculture, Beijing

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  PubMed  CAS  Google Scholar 

  • Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838

    Article  PubMed  CAS  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process: Process Intensif 48:1146–1151

    Article  CAS  Google Scholar 

  • de Swaaf ME, Sijtsma L, Pronk JT (2003) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672

    Article  PubMed  Google Scholar 

  • Dean AP, Sigee DC, Estrada B, Pittman JK (2010) Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour Technol 101:4499–4507

    Article  PubMed  CAS  Google Scholar 

  • Dunstan GA, Volkman JK, Barrett SM, Garland CD (1993) Changes in the lipid composition and maximization of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J Appl Phycol 5:71–83

    Article  CAS  Google Scholar 

  • Emdad ID, Berland B (1989) Variation in lipid class composition during batch growth of Nannochloropsis salina and Pavlova lutheri. Mar Chem 26:215–225

    Article  Google Scholar 

  • Ganuza E, Anderson AJ, Ratledge C (2008) High-cell-density cultivation of Schizochytrium sp. in an ammonium/pH-auxostat fed-batch system. Biotechnol Lett 30:1559–1564

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Ferris C, de los Rios A, Ascaso C, Moreno J (1996) Correlated biochemical and ultrastructural changes in nitrogen-starved Euglena gracilis. J Phycol 32:953–963

    Article  Google Scholar 

  • Gladue RM, Maxey JE (1994) Microalgal feeds for aquaculture. J Appl Phycol 6:131–141

    Article  Google Scholar 

  • Guerrini F, Cangini M, Boni L, Trost P, Pistocchi R (2000) Metabolic responses of the diatom Achnanthes brevipes to nutrient limitation. J Phycol 36:882–890

    Article  CAS  Google Scholar 

  • Guschina IA, Harwood JL (2009) Algal lipids and effect of the environment on their biochemistry. In: Arts MT, Brett MT, Kainz KJ (eds) Lipids in aquatic ecosystems. Springer, Dordrecht, pp 1–24

    Chapter  Google Scholar 

  • Hu Q (2004) Environmental effects on cell composition. In: Richmond A (ed) Handbook of microalgal culture, biotechnology and applied phycology. Blackwell, Oxford, pp 83–94

    Google Scholar 

  • Huang XX, Yin YQ, Shi ZH, Li WW, Zhou HQ, Lv WQ (2010) Lipid content and fatty acid composition in wild-caught silver pomfret (Pampus argenteus) broodstocks: effects on gonad development. Aquaculture 310:192–199

    Article  CAS  Google Scholar 

  • Huang XX, Zhou HQ, Yuan CD, Sun M (2003) The effects of nitrogen source and concentration on the nutritional value of Nannochloropsis oculata. J Shanghai Fish Univ 12:113–116

    CAS  Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27:631–635

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen AN, Aasen IM, Josefsen KD, Strøm AR (2008) Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation. Appl Microb Biotechnol 80:297–306

    Article  CAS  Google Scholar 

  • Jiang XM (2002) Effects of temperatures, light intensity and nitrogen concentrations on the growth and fatty acid composition of Nannochloropsis oculata. Mar Science 26:9–12

    CAS  Google Scholar 

  • Knothe G, Bagby MO, Ryan TW (1998) Precombustion of fatty acids and esters of biodiesel: a possible explanation for differing cetane numbers. J Am Oil Chem Soc 75:1007–1013

    Article  CAS  Google Scholar 

  • Ladommatos N, Parsi M (1996) The effect of fuel cetane improver on diesel pollutant emissions. Fuel 75:8–14

    Article  CAS  Google Scholar 

  • Li Y, Lian S, Tong D, Song R, Yang W, Fan Y, Qing R, Hu C (2011) One-step production of biodiesel from Nannochloropsis sp. on solid base Mg–Zr catalyst. Appl Energy 88:3313–3317

    Article  CAS  Google Scholar 

  • Liu SC, Li DT, Gao JL, Huang BY, Zhang CH, Hao JM, Zhang L (2009) Lipid components of Ostrea rivularis, Paphia undulata and Pinctada martensii. J Fish China 33:666–671

    CAS  Google Scholar 

  • Liu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722

    Article  PubMed  CAS  Google Scholar 

  • McGinnis KM, Dempster TA, Sommerfeld MR (1997) Characterization of the growth and lipid content of the diatom Chaetoceros muelleri. J Appl Phycol 9:19–24

    Article  CAS  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  PubMed  CAS  Google Scholar 

  • Moser BR, Vaughn (2012) Efficacy of fatty acid profile as a tool for screening feedstocks for biodiesel production. Biomass Bioenergy 37:31–41

    Article  CAS  Google Scholar 

  • Muller-Feuga A, Moal J, Kaas R (2003) The microalgae of aquaculture. In: Stottrup JG, McEvoy LA (eds) Live feeds in marine aquaculture. Blackwell, Oxford, pp 206–252

    Chapter  Google Scholar 

  • Neenan B, Feinberg D, Hill A, McIntosh R, Terry K (1986) Fuels from microalgae: technology status, potential, and research requirements. Golden: Solar Energy Research Institute. SERI /SP-231-2550. p 149

  • Packer A, Li Y, Andersen T, Hu Q, Kuang Y, Sommerfeld M (2011) Growth and neutral lipid synthesis in green microalgae: a mathematical model. Bioresour Technol 102:111–117

    Article  PubMed  CAS  Google Scholar 

  • Rao AR, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2000) Effect of salinity on growth of green algae Botryococcus braunii and its constituents. Bioresour Technol 98:560–564

    Article  Google Scholar 

  • Ratledge C, Wynn JP (2002) The biochemistry and biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51

    Article  PubMed  CAS  Google Scholar 

  • Scott S, Davey M, Dennis J, Horst I, Howe C, Lea-Smith D, Smith A (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotech 21:1–10

    Article  Google Scholar 

  • Scragg AH, Morrison J, Shales SW (2003) The use of a fuel containing Chlorella vulgaris in a diesel engine. Enzyme Microb Technol 33:884–889

    Article  CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s aquatic species program-biodiesel from algae. Golden: National Renewable Energy Laboratory, NREL/TP-580-24190

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14:2596–2610

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  PubMed  CAS  Google Scholar 

  • Takagi M, Karseno, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226

  • Thompson GA Jr (1996) Lipids and membrane function in green algae. Biochem Biophys Acta 1302:17–45

    Article  PubMed  Google Scholar 

  • Umdu ES, Tuncer M, Seker E (2009) Transesterification of Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresour Technol 100:2828–2831

    Article  PubMed  CAS  Google Scholar 

  • Vicente G, Martínez M, Aracil J (2004) Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour Technol 92:297–305

    Article  PubMed  CAS  Google Scholar 

  • Wadumesthrige K, Smith JC, Wilson JR, Salley SO, Simon Ng KY (2008) Investigation of the parameters affecting the cetane number of biodiesel. J Am Oil Chem Soc 85:1073–1081

    Article  CAS  Google Scholar 

  • Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from freshwater microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20

    Article  CAS  Google Scholar 

  • Xu H, Miao XL, Wu QY (2006) High quality biodiesel production from a microalgae Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  PubMed  CAS  Google Scholar 

  • Yeesang C, Cheirsilp B (2011) Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour Technol 102:3034–3040

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by a Project of the National High Technology Research and Development Program, China (2009AA064401), a Project of the State Oceanic Administration of China (SHME2011SW02) and the Innovation Research Group Developing Project in the Universities of Shanghai (nutrition, feed and environment of animal aquaculture, the second).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuxiong Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Huang, Z., Wen, W. et al. Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). J Appl Phycol 25, 129–137 (2013). https://doi.org/10.1007/s10811-012-9846-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9846-9

Keywords

Navigation