Skip to main content
Log in

Mapping quantitative trait loci (QTLs) associated with resistance to major pathotype-isolates of pearl millet downy mildew pathogen

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Downy mildew (DM) caused by Sclerospora graminicola is the most devastating disease of pearl millet. It may lead to annual grain yield losses of up to ~80% and substantial deterioration of forage quality and production. The present study reports construction of the linkage map integrating simple sequence repeat (SSR) markers, for detection of quantitative trait loci (QTLs) associated with DM resistance in pearl millet. A mapping population comprising of 187 F8 recombinant inbred lines (RILs) was developed from the cross (ICMB 89111-P6 × ICMB 90111-P6). The RILs were evaluated for disease reaction at a juvenile stage in the greenhouse trials. Genotyping data was generated from 88 SSR markers on RILs and used to construct genetic linkage map comprising of 53 loci on seven linkage groups (LGs) spanning a total length of 903.8 cM with an average adjacent marker distance of 18.1 cM. Linkage group 1 (LG1; 241.1 cM) was found to be longest and LG3 the shortest (23.0 cM) in length. The constructed linkage map was used to detect five large effect QTLs for resistance to three different pathotype-isolates of S. graminicola from Gujarat (Sg445), Haryana (Sg519) and Rajasthan (Sg526) states of India. One QTL was detected for isolate Sg445 resistance, and two each for Sg519 and Sg526 resistance on LG4 with LOD scores ranging from 5.1 to 16.0, explaining a wide range (16.7% to 78.0%) of the phenotypic variation (R2). All the five co-localized QTLs on LG4 associated with the DM resistance to the three pathotype-isolates were contributed by the resistant parent ICMB 90111-P6. The QTLs reported here may be useful for the breeding programs aiming to develop DM resistant pearl millet cultivars with other desirable traits using genomic selection (GS) approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CIM:

Composite interval mapping

cM:

Centimorgan

DM:

Downy mildew

DMI:

Downy mildew incidence

DMR:

Downy mildew resistance

FAO:

Food and Agriculture Organization of the United Nations

LG:

Linkage group

LOD:

Logarithm of the odds

MIM:

Multiple interval mapping

QTLs:

Quantitative trait locus or quantitative loci, relying on context

RILs:

Recombinant inbred lines

RH:

Relative humidity

SSRs:

Simple sequence repeats

References

  • Ambawat, S., Senthilvel, S., Hash, C. T., Nepolean, T., Rajaram, V., Eshwar, K., Sharma, R., Thakur, R. P., Rao, V. P., Yadav, R. C., & Srivastava, R. K. (2016). QTL mapping of pearl millet rust resistance using an integrated DArT-and SSR-based linkage map. Euphytica, 209, 461–476.

    Article  Google Scholar 

  • Anuradha, N., Satyavathi, C. T., Bharadwaj, C., Nepolean, T., Sankar, S. M., Singh, S. P., Meena, M. C., Singhal, T., & Srivastava, R. K. (2017). Deciphering genomic regions for high grain iron and zinc content using association mapping in pearl millet. Frontiers in Plant Science, 8, 412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aparna, K., Nepolean, T., Srivastava, R. K., Kholová, J., Rajaram, V., Kumar, S., Rekha, B., Senthilvel, S., Hash, C. T., & Vadez, V. (2015). Quantitative trait loci associated with constitutive traits controlling water use in pearl millet [Pennisetum glaucum (L.) R. Br.]. Plant Biology, 17(5), 1073–1084.

    Article  CAS  PubMed  Google Scholar 

  • Azhaguvel P. (2001). Linkage map construction and identification of QTLs for downy mildew (Sclerospora graminicola) resistance in pearl millet [Pennisetum glaucum (L.) R. Br.], Ph.D. Thesis, TNAU, Coimbatore.

  • Bidinger, F. R., Nepolean, T., Hash, C. T., Yadav, R. S., & Howarth, C. J. (2007). Quantitative trait loci for grain yield in pearl millet under variable postflowering moisture conditions. Crop Science, 47(3), 969–980.

    Article  Google Scholar 

  • Brunken, J. N. (1977). A systematic study of Pennisetum sect. Pennisetum (Gramineae). American Journal of Botany, 64, 161–176.

    Article  Google Scholar 

  • Budak, H., Pedraza, F., Cregan, P. B., Baenziger, P. S., & Dweikat, I. (2003). Development and utilization of SSRs to estimate the degree of genetic relationships in a collection of pearl millet germplasm. Crop Science, 43, 2284–2290.

    Article  CAS  Google Scholar 

  • DES, (2012–13). Directorate of Economics and Statistics, Department of Agriculture and Co-operation, Ministry of Agriculture, Government of India.

  • FAOSTAT, (2017) FAO Database. Available at http://faostat.fao.org. Accessed 10 June 2018

  • Gulia, S. K. (2004). QTL mapping for improvement of downy mildew [Sclerospora graminicola (Sacc.) J. Schroet.] resistance (DMR) in pearl millet (Pennisetum glaucum (L.) R. Br.) hybrid parental line ICMB 89111. Ph.D. Thesis, CCS HAU, Hisar, India.

  • Haldane, J. (1919). The combination of linkage values and the calculation of distance between the loci of linked factors. Journal of Genetics, 8, 299–309.

    Article  Google Scholar 

  • Hash, C. T., Cavan, G. P., Bidinger, F. R., Howarth, C. J., & Singh, S. D. (1995). Downy mildew resistance QTLs from a seedling heat tolerance mapping population. International Sorghum and Millets Newsletter, 36, 66–67. ISSN 0584-1321.

    Google Scholar 

  • Hash, C. T., Sharma, A., Kolesnikova-Allen, M. A., Singh, S. D., Thakur, R. P., Raj, A. B., Rao, M. R., Nijhawan, D. C., Beniwal, C. R., Sagar, P., & Yadav, H. P. (2006). Teamwork delivers biotechnology products to Indian small-holder crop-livestock producers: Pearl millet hybrid “HHB 67 improved” enters seed delivery pipeline. Journal of SAT Agricultural Research, 2, 1–3.

    Google Scholar 

  • James, W. C. (1983). Crop loss assessment. In: Plant Pathologist. Pook book 2nd Edn. (Johnson, A. and C. Boths, Eds.). Common wealth Mycological Institute, Kew, pp: 130–140.

  • Jones, E. S., Liu, C. J., Gale, M. D., Hash, C. T., & Witcombe, J. R. (1995). Mapping quantitative trait loci for downy mildew resistance in pearl millet. Theoretical and Applied Genetics, 91, 448–456.

    Article  CAS  PubMed  Google Scholar 

  • Jones, E. S., Breese, W. A., Liu, C. J., Singh, S. D., Shaw, D. S., & Witcombe, J. R. (2002). Mapping quantitative trait loci for resistance to downy mildew in pearl millet: Filed and greenhouse screens detect the same QTL. Crop Science, 42, 1316–1323.

    Article  CAS  Google Scholar 

  • ​Kanfany, G., Zoclanclounon, Y. A. B., Tongoona, P., Danquah, A., Offei, S. K., Fofana, A., Thiaw, C., Danquah, E. Y. & Cisse, N., (2018). Evidence of pathogenic variation in Sclerospora graminicola populations from pearl millet growing regions in Senegal. Journal of Plant Pathology, 100(3), 429-434.

  • Kumar, S., Hash, C. T., Thirunavukkarasu, N., Singh, G., Rajaram, V., Rathore, A., Senapathy, S., Mahendrakar, M. D., Yadav, R. S., & Srivastava, R. K. (2016). Mapping quantitative trait loci controlling high iron and zinc content in self and open pollinated grains of pearl millet [Pennisetum glaucum (L.) R. Br.]. Frontiers in Plant Science, 7, 1636.

    PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Hash, C. T., Nepolean, T., Satyavathi, C. T., Singh, G., Mahendrakar, M. D., Yadav, R. S., & Srivastava, R. K. (2017). Mapping QTLs controlling flowering time and important agronomic traits in pearl millet. Frontiers in Plant Science, 8, 1731.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Hash, C. T., Nepolean, T., Mahendrakar, M. D., Satyavathi, C. T., Singh, G., Rathore, A., Yadav, R. S., Gupta, R., & Srivastava, R. K. (2018). Mapping grain iron and zinc content quantitative trait loci in an Iniadi-derived immortal population of pearl millet. Genes, 9, 248.

    Article  CAS  PubMed Central  Google Scholar 

  • Liu, C. J., Witcombe, J. R., Pittaway, T. S., Nash, M., Hash, C. T., Busso, C. G., & Gale, M. D. (1994). A RFLP-based genetic map of pearl millet (Pennisetum glaucum). Theoretical and Applied Genetics, 89, 481–487.

    Article  CAS  PubMed  Google Scholar 

  • Mace, E. S., Buhariwalla, K. K., Buhariwalla, H. K., & Crouch, J. H. (2003). A high-throughput DNA extraction protocol for tropical molecular breeding programs. Plant Molecular Biology Reporter, 21, 459–460.

    Article  Google Scholar 

  • Manning, K., Pelling, R., Higham, T., Schwenniger, J. L., & Fuller, D. Q. (2011). 4500-year old domesticated pearl millet (Pennisetum glaucum) from the Tilemsi Valley, Mali: New insights into an alternative cereal domestication pathway. Journal of Archaeological Science, 38, 312–322.

    Article  Google Scholar 

  • Morgan, R. N., Wilson, J. P., Hanna, W. W., & Ozias-Akins, P. (1998). Molecular markers for rust and pyricularia leaf spot disease resistance in pearl millet. Theoretical and Applied Genetics, 96(3–4), 413–420.

    Article  CAS  PubMed  Google Scholar 

  • Moumouni, K. H., Kountche, B. A., Jean, M., Hash, C. T., Vigouroux, Y., Haussmann, B. I., & Belzile, F. (2015). Construction of a genetic map for pearl millet, Pennisetum glaucum (L.) R. Br., using a genotyping-by-sequencing (GBS) approach. Molecular Breeding, 35, 5.

    Article  CAS  Google Scholar 

  • Nepolean, T. (2002). Identification of QTLs for yield and its component traits and downy mildew [Sclerospora graminicola (Sacc.) J. Schrot.] resistance in pearl millet [Pennisetum glaucum (L.) R. Br.]. Ph.D. thesis, TNAU, Coimbatore, India.

  • Paterson, A. H., Damon, S., Hewitt, J. D., Zamir, D., Rabinowitch, H. D., Lincoln, S. E., Lander, E. S., & Tanksley, S. D. (1991). Mendelian factors underlying quantitative traits in tomato: Comparison across species, generations, and environments. Genetics, 127, 181–197.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poncet, V., Martel, E., Allouis, S., Devos, K., Lamy, F., Sarr, A., & Robert, T. (2002). Comparative analysis of QTLs affecting domestication traits between two domesticated× wild pearl millet (Pennisetum glaucum L., Poaceae) crosses. Theoretical and Applied Genetics, 104(6–7), 965–975.

    Article  CAS  PubMed  Google Scholar 

  • Qi, X., Pittaway, T. S., Lindup, S., Liu, H., Waterman, E., Padi, F. K., Hash, C. T., Zhu, J., Gale, M. D., & Devos, K. M. (2004). An integrated genetic map and a new set of simple sequence repeat markers for pearl millet, Pennisetum glaucum. Theoretical and Applied Genetics, 109, 1485–1493.

    Article  CAS  PubMed  Google Scholar 

  • Rai, K. N., & Rao, A. S. (1998). Registration of pearl millet cytoplasmic-nuclear male-sterile line ICMA-5. Crop Science, 38, 556.

    Article  Google Scholar 

  • Rajaram, V., Nepolean, T., Senthilvel, S., Varshney, R. K., Vadez, V., Srivastava, R. K., Shah, T. M., Supriya, A., Kumar, S., Kumari, B. R., & Bhanuprakash, A. (2013). Pearl millet [Pennisetum glaucum (L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs. BMC Genomics, 14, 159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanou, J., Bayala, J., Bazie, P., & Teklehaimanot, Z. (2012). Photosynthesis and biomass production by millet (Pennisetum glaucum) and taro (Colocasia esculenta) grown under baobab (Adansonia digitata) and néré (Parkia biglobosa) in an agroforestry parkland system of Burkina Faso (West Africa). Experimental Agriculture, 48, 283–300.

    Article  Google Scholar 

  • Senthilvel, S., Jayashree, B., Mahalakshmi, V., Kumar, P. S., Nakka, S., Nepolean, T., & Hash, C. T. (2008). Development and mapping of simple sequence repeat markers for pearl millet from data mining of expressed sequence tags. BMC Plant Biology, 8, 119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, P. C., Sehgal, D., Singh, D., Singh, G., & Yadav, R. S. (2011). A major terminal drought tolerance QTL of pearl millet is also associated with reduced salt uptake and enhanced growth under salt stress. Molecular Breeding, 27, 207–222.

    Article  CAS  Google Scholar 

  • Sharma, R., Gupta, S. K., Kadvani, D. L., Shivpuri, A., & Rai, K. N. (2014). New virulent pathotypes of Sclerospora graminicola and resistance sources in pearl millet for A1 zone in India. The Indian Journal of Agricultural Sciences, 84(6), 707–710.

    Google Scholar 

  • Sharma, R., Upadhyaya, H. D., Sharma, S., Gate, V. L., & Raj, C. (2015). New sources of resistance to multiple pathotypes of Sclerospora graminicola in the pearl millet mini core germplasm collection. Crop Science, 55, 1619–1628.

    Article  Google Scholar 

  • Shivhare, R., & Lata, C. (2017). Exploration of genetic and genomic resources for abiotic and biotic stress tolerance in pearl millet. Frontiers in Plant Science, 7, 2069.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh, S. D., King, S. B., & Werder, J. (1993). Downy mildew disease of pearl millet. Information Bulletin no. 37, ICRISAT, Patancheru, India.

  • Singh, K., Ghai, M., Garg, M., Chhuneja, P., Kaur, P., Schnurbusch, T., Keller, B., & Dhaliwal, H. S. (2007). An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum×T. monococcum RIL population. Theoretical and Applied Genetics, 115, 301–312.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R. K., Singh, R. B., Singh, S. P., & Sharma, M. L. (2011). Identification of sugarcane microsatellites associated to sugar content in sugarcane and transferability to other cereal genomes. Euphytica, 182, 335–354.

    Article  CAS  Google Scholar 

  • Singh, R. K., Singh, R. B., Singh, S. P., & Sharma, M. L. (2012). Genes tagging and molecular diversity of red rot susceptible/tolerant sugarcane hybrids using c-DNA and unigene derived markers. World Journal of Microbiology & Biotechnology, 8, 1669–1679.

    Article  CAS  Google Scholar 

  • Singh, R. B., Srivastva, S., Verma, A. K., Singh, B., & Singh, R. K. (2014). Importance and progress of microsatellite markers in sugarcane (Saccharum spp. hybrids). Indian Journal of Sugarcane Technology, 29, 1–12.

    Google Scholar 

  • Singh, R. B., Singh, B., & Singh, R. K. (2015). Development of microsatellite (SSRs) markers and evaluation of genetic variability within sugarcane commercial varieties (Saccharum spp. hybrids). International Journal of Advance Research, 3, 700–708.

    CAS  Google Scholar 

  • Singh, R. B., Singh, B., & Singh, R. K. (2018). Evaluation of genetic diversity in Saccharum species clones and commercial varieties employing molecular (SSRs) and physiological markers. Indian Journal of Plant Genetic Resources, 3, 17–26.

    Article  Google Scholar 

  • Singh, R. B., Singh, B., & Singh, R. K. (2019). Development of EST based simple sequence repeats (EST-SSRs) markers for Saccharum complex and allied cereal crops. Industrial Crops and Products, 128, 38–47.

    Article  CAS  Google Scholar 

  • Sourdille, P., Singh, S., Cadalen, T., Brown-Guedira, G. L., Gay, G., Qi, L., Gill, B. S., Dufour, P., Murigneux, A., & Bernard, M. (2004). Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Functional & Integrative Genomics, 4, 12–25.

    Article  CAS  Google Scholar 

  • Stam, P. (1993). Construction of integrated genetic linkage maps by means of computer package-JoinMap. The Plant Journal, 5, 739–744.

    Article  Google Scholar 

  • Supriya, A., Senthilvel, S., Nepolean, T., Eshwar, K., Rajaram, V., Shaw, R., Hash, C. T., Kilian, A., Yadav, R. C., & Narasu, M. L. (2011). Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. Theoretical and Applied Genetics, 123, 239–250.

    Article  CAS  PubMed  Google Scholar 

  • Taunk, J., Sehgal, D., Yadav, N. R., Howarth, C., Yadav, R. C., & Yadav, R. S. (2018). Mapping of easy to screen SSR markers for selection of RFLP markers-bracketed downy mildew resistance QTLs in pearl millet. European Journal of Plant Pathology, 151, 401–411.

    Article  Google Scholar 

  • Thakur, R. P., Rao, V. P., & Sharma, R. (2009). Temporal virulence change and identification of resistance in pearl millet germplasm to diverse pathotypes of Sclerospora graminicola. Journal of Plant Pathology, 629–636.

  • Vadez, V., Hash, T., Bidinger, F. R., & Kholova, J. (2012). Phenotyping pearl millet for adaptation to drought. Frontiers in Physiology, 3, 386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney, R. K., Thiel, T., Stein, N., Langridge, P., & Graner, A. (2002). In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cellular and Molecular Biology Letters, 7(2A), 537–546.

    CAS  PubMed  Google Scholar 

  • Varshney, R. K., Terauchi, R., & McCouch, S. R. (2014). Harvesting the promising fruits of genomics: Applying genome sequencing technologies to crop breeding. PLoS Biology, 12(6), e1001883.

    Article  PubMed  PubMed Central  Google Scholar 

  • Varshney, R. K., Shi, C., Thudi, M., Mariac, C., Wallace, J., Qi, P., et al. (2017). Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnology, 35, 969–976.

    Article  CAS  PubMed  Google Scholar 

  • Voorrips, R. E. (2002). Map chart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93, 77–79.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Basten. C. J., Zeng, Z. B. (2007). Windows QTL cartographer 2.5 http://statgen.ncsu.edu/qtlcart/WQTLCart.htm. Accessed 10 June 2018

  • Yadav, R. S., Hash, C. T., Bidinger, F. R., Cavan, G. P., & Howarth, C. J. (2002). Quantitative trait loci associated with traits determining grain and Stover yield in pearl millet under terminal drought stress conditions. Theoretical and Applied Genetics, 104, 67–83.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, O. P., Mitchell, S. E., Zamora, A., Fulton, T. M., & Kresovich, S. (2007). Development of new simple sequence repeat markers for pearl millet. Journal of SAT Agricultural Research, 3, 34.

    Google Scholar 

  • Zeng, Z. B. (1994). Precision mapping of quantitative trait loci. Genetics, 136, 1457–1468.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the help provided by pearl millet breeding and pathology staff at ICRISAT-Patancheru. This work has been published as part of the CGIAR Research Program on Dryland Cereals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Srivastava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest directly or indirectly and informed consent to publish this study and that the manuscript complies with the ethical standards of the journal.

Research involving human participants and/or animals

Not applicable to this study, did not work with humans or animals.

Informed consent

Not applicable to this study, did not work with humans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chelpuri, D., Sharma, R., Durga, K.K. et al. Mapping quantitative trait loci (QTLs) associated with resistance to major pathotype-isolates of pearl millet downy mildew pathogen. Eur J Plant Pathol 154, 983–994 (2019). https://doi.org/10.1007/s10658-019-01718-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01718-x

Keywords

Navigation