Skip to main content
Log in

Graphical, statistical and index-based techniques integrated for identifying the hydrochemical fingerprints and groundwater quality of In Salah, Algerian Sahara

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Groundwater, a predominant reservoir of freshwater, plays a critical role in providing a sustainable potable water and water for agricultural and industry uses in the In Salah desert region of Algeria. This research collected 82 underground water samples from Albian aquifers to assess water quality and identify hydrogeochemical processes influencing mineralization. To achieve this objective, various methods were employed to evaluate water quality based on its intended uses. The drinking water quality index utilized revealed the water potability status, while the indicators of irrigation potability were employed to evaluate its quality for agricultural purposes. Additionally, an assessment of groundwater susceptibility to corrosion and scaling in an industrial context was conducted using several indices, e.g., Langelier index, Larson-Skold index, Ryznar index, chloride-sulfate mass ratio, Puckorius index, aggressiveness index, and the Revelle index. The findings of this study revealed that the groundwater quality for consumption fell into four categories: good (2.44%), fair (29.27%), poor (65.85%), and non-potable (2.44%). Concerning agricultural irrigation, the indexical results indicated that 15.85% of the waters exhibited adequate quality, while 84.15% were questionable for irrigation. Calculations based on various corrosion and scaling evaluation indices showed that most wells were prone to corrosion, with a tendency for calcium bicarbonate deposit formation. Furthermore, the hydrochemical study identified three water types: Na–Cl (53.66%), Ca–Mg–Cl (37.80%), and Ca–Cl (8.54%) waters. Analyses of correlation matrices, R-type clustering, factor loadings, Gibbs diagrams, scatterplots, and chloro-alkaline indices highlighted that the chemistry of the Albian groundwater is fundamentally impacted by a number of processes such as silicate weathering, evaporite dissolution, ionic exchange, and anthropogenic inputs, that played impactful role in the aquifer's water chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abba, S. I., Egbueri, J. C., Benaafi, M., Usman, J., Usman, A. G., & Aljundi, I. H. (2023). Fluoride and nitrate enrichment in coastal aquifers of the Eastern Province, Saudi Arabia: The influencing factors, toxicity, and human health risks. Chemosphere, 336, 139083. https://doi.org/10.1016/j.chemosphere.2023.139083

    Article  CAS  Google Scholar 

  • Abdessamed, D., Jodar-Abellan, A., Ghoneim, S. S., Almaliki, A., Hussein, E. E., & Pardo, M. Á. (2023). Groundwater quality assessment for sustainable human consumption in arid areas based on GIS and water quality index in the watershed of Ain Sefra (SW of Algeria). Environment and Earth Science, 82, 510. https://doi.org/10.1007/s12665-023-11183-9

    Article  CAS  Google Scholar 

  • Abu, M., Akurugu, B. A., & Egbueri, J. C. (2024). Understanding groundwater mineralization controls and the implications on its quality (Southwestern Ghana): Insights from hydrochemistry, multivariate statistics, and multi-linear regression models. Acta Geophysica. https://doi.org/10.1007/s11600-023-01271-6

    Article  Google Scholar 

  • Adimalla, N., & Ajay, K. T. (2020). Hydrogeochemical investigation of groundwater quality in the hard rock terrain of South India using geographic information system (GIS) and groundwater quality index (GWQI) techniques. Groundwater for Sustainable Development, 10, 100288. https://doi.org/10.1016/j.gsd.2019.100288

    Article  Google Scholar 

  • Agbasi, J. C., Egbueri, J. C., Ayejoto, D. A., Unigwe, C. O., Omeka, M. E., Nwazelibe, V. E., Ighalo, J. O., Pande, C. B., & Fakoya, A. A. (2023). The impact of seasonal changes on the trends of physicochemical, heavy metal and microbial loads in water resources of Southeastern Nigeria: A critical review. In: Egbueri et al. (Eds.), Climate Change Impacts on Nigeria. Springer Climate. Springer. https://doi.org/10.1007/978-3-031-21007-5_25

  • Alley, W. M., Winter, T. C., Harvey, J. W., & Franke, O. L. (1998). Ground water and surface water: A single resource. USGS Publ. 79. https://doi.org/10.3389/fpsyg.2012.00044.

  • Alum, O. L., Abugu, H. O., Onwujiogu, V. C., Ezugwu, A. L., Egbueri, J. C., Aralu, C. C., Ucheana, I. A., Okenwa, J. C., Ezeofor, C. C., Orjiocha, S. I., & Ihedioha, J. N. (2023). Characterization of the hydrochemistry, scaling and corrosivity tendencies, and irrigation suitability of the water of the Rivers Karawa and Iyiaji. Sustainability, 15(12), 9366. https://doi.org/10.3390/su15129366

    Article  CAS  Google Scholar 

  • Amiri, V., Bhattacharya, P., & Nakhaei, M. (2021). The hydrogeochemical evaluation of groundwater resources and their suitability for agricultural and industrial uses in an arid area of Iran. Groundwater for Sustainable Development, 12, 100527. https://doi.org/10.1016/j.gsd.2020.100527

    Article  Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution (2nd ed.). CRC Press.

    Google Scholar 

  • Asare, A., Emmanuel, K. A., Bukari, A., & Frederick, O. (2021). Groundwater for sustainable development physico-chemical evaluation of groundwater along the coast of the central. Groundwater for Sustainable Development, 13, 100571. https://doi.org/10.1016/j.gsd.2021.100571

    Article  Google Scholar 

  • Ashworth, V. (2010). Principles of cathodic protection. Shreir’s Corros. Elsevier (pp. 2747–2762).

  • Ayejoto, D. A., Egbueri, J. C., Agbasi, J. C., Omeka, M. E., Unigwe, C. O., Nwazelibe, V. E., Ighalo, J. O., & Pande, C. B. (2023). Influence of seasonal changes on the quality of water resources in Southwestern Nigeria: A review. In: Egbueri et al. (Eds.), Climate Change Impacts on Nigeria. Springer Climate. Springer. https://doi.org/10.1007/978-3-031-21007-5_22

  • Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture, FAO irrigation and drainage Paper No. 29, Rev. 1, U. N. Food and Agriculture Organization.

  • Banda, T. D., & Muthukrishna, V. K. (2020). Development of water quality indices (WQIs): A review. Polish Journal of Environmental Studies, 29(3), 2011–2021. https://doi.org/10.15244/pjoes/110526

    Article  CAS  Google Scholar 

  • Besbes, M., Larbes, A., Babasy, M., & Merzougui, B. (2005). Modeling of the aquifer system of the western northern Sahara basin: Hydrogeology and Conceptual Model. Sahara and sahel observatory report, 64.

  • Biao, Z., Dan, Z., Pengpen, Z., Shen, Q., Fu, L., & Guangcai, W. (2020). Hydrochemical characteristics of groundwater and dominant water-rock interactions in the Delingha Area, Qaidam Basin, Northwest China. Water, 2020(12), 836. https://doi.org/10.3390/w12030836

    Article  CAS  Google Scholar 

  • Bouselsal, B. (2016). Etude hydrog´eologique et hydrochimique de l’aquif`ere libre d’El Oued Souf (SE Alg´erie). PhD thesis. University of Annaba, Algeria, 204.

  • Bouselsal, B., & Belksier, M. S. (2018). Caractérisation géochimique de l'aquifère de Complexe Terminal de El-Oued (SE Algérie). Journal International Sciences et Technique de l’Eau et de l’Environnement. Volume III - Numéro 1 - Avril 2018, 74–80.

  • Bouselsal, B., & Saibi, S. (2022). Evaluation of groundwater quality and hydrochemical characteristics in the shallow aquifer of El-Oued Region (Algerian Sahara). Groundwater for Sustainable Development, 17, 100747. https://doi.org/10.1016/j.gsd.2022.100747

    Article  Google Scholar 

  • Boussaada, N., Bouselsal, B., Benhamida, S. A., Hammad, N., & Kharroubi, M. (2023). Geochemistry and water quality assessment of continental intercalary aquifer in Ouargla region (Sahara, Algeria). Journal of Ecological Engineering, 24(2), 279–294. https://doi.org/10.12911/22998993/156832

    Article  Google Scholar 

  • Brown, R. M., Mc Clelland, N., Deininger, R. A., & Tozer, R. G. (1970). A water quality index—Do we dare. Water Sewage Works, 117, 339–343.

    Google Scholar 

  • BRL. (1998). Etude du plan directeur général de développement des régions sahariennes. Rapport sur les connaissances d’ensemble. A.N.R.H. Algérie.

  • Busson, G. (1967). Le Mésozoique saharien. lère partie: l’Extrême-Sud Tunisien, Publ. C.R.Z.A. Géologie. 8, CNRS, Paris, p. 194.

  • Chen, H., Ye, Q., Wang, X., Sheng, J., Yu, X., Zhao, S., Zou, X., Zhang, W., & Xue, G. (2024). Applying sludge hydrolysate as a carbon source for biological denitrification after composition optimization via red soil filtration. Water Research, 249, 120909. https://doi.org/10.1016/j.watres.2023.120909

    Article  CAS  Google Scholar 

  • Cheng, Y., Lan, S., Fan, X., Tjahjadi, T., Jin, S., & Cao, L. (2023). A dual-branch weakly supervised learning based network for accurate mapping of woody vegetation from remote sensing images. International Journal of Applied Earth Observation and Geoinformation, 124, 103499. https://doi.org/10.1016/j.jag.2023.103499

    Article  Google Scholar 

  • Chenini, I., Boutheina, F., & Ben Mammou, A. (2010). Identification of major sources controlling groundwater chemistry from a multilayered aquifer system. Chemical Speciation and Bioavailability, 22(3), 183–189. https://doi.org/10.3184/095422910X12829228276711

    Article  CAS  Google Scholar 

  • Cherchali, M. E. H., Moulla, A. S., Amrous, K., Ouarezki, S., Rezka, A., & Daas, N. (2021). The continental intercalaire groundwaters of the Tidikelt (In-Salah region, Algeria). Hydrochemical and isotopic features. Isotopes in Environmental and Health Studies, 57(3), 217–235. https://doi.org/10.1080/10256016.2021.1875221

    Article  CAS  Google Scholar 

  • Conrad, G. (1969). L’évolution Continentale du Sahara Algérien (Saoura, Erg Chech, Tanezrouft, Ahnetmouydir) (pp. 49–65). Edition du Centre National de la Recherche Scientifique.

    Google Scholar 

  • Cornet, A. (1964). Introduction a l’hydrogéologie Saharienne (introduction to Saharan hydrogeology). Géog Phys Et Géol Dyn, 6, 5–72.

    Google Scholar 

  • Cotta, A. J. B., Fachetti, P. S., & Andrade, R. P. (2021). Characteristics and impacts on the groundwater of the Guriri beach resort, São Mateus, ES, Brazil. Environment, Development and Sustainability, 23, 10601–10622. https://doi.org/10.1007/s10668-020-01074-5

    Article  Google Scholar 

  • Derdour, A., Abdo, H. G., Almohamad, H., Alodah, A., Al Dughairi, A. A., Ghoneim, S. S. M., & Ali, E. (2023). Prediction of groundwater quality index using classification techniques in arid environments. Sustainability, 15, 9687. https://doi.org/10.3390/su15129687

    Article  CAS  Google Scholar 

  • Doneen, L.D. (1954). Salination of Soil by Salts in the Irrigation Water. American Geophysical Union Transactions, 35, 943-950. https://doi.org/10.1029/TR035i006p00943

    Google Scholar 

  • Dong, W., Yang, Y., Qu, J., Xiao, S., & Li, Y. (2023a). Local information enhanced graph-transformer for hyperspectral image change detection with limited training samples. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2023.3269892

    Article  Google Scholar 

  • Dong, W., Zhao, J., Qu, J., Xiao, S., Li, N., Hou, S., & Li, Y. (2023b). Abundance matrix correlation analysis network based on hierarchical multihead self-cross-hybrid attention for hyperspectral change detection. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2023.3235401

    Article  Google Scholar 

  • Egbueri, J. C., Ezugwu, C. K., Unigwe, C. O., Onwuka, O. S., Onyemesili, O. C., Mgbenu. C. N. (2020). Multidimensional Analysis of the Contamination Status, Corrosivity and Hydrogeochemistry of Groundwater from Parts of the Anambra Basin, Nigeria. Analytical Letters 0 (0): 1–31. https://doi.org/10.1080/00032719.2020.1843049

  • Egbueri, J.C., Agbasi, J.C. (2022). Performances of MLR, RBF-NN, and MLP-NN in the Evaluation and Prediction of Water Resources Quality for Irrigation Purposes under Two Modeling Scenarios. Geocarto International, 37(26):14399–14431. https://doi.org/10.1080/10106049.2022.2087758

  • Egbueri, J. C. (2022a). Predicting and analysing the quality of water resources for industrial purposes using integrated data-intelligent algorithms. Groundwater for Sustainable Development, 18, 100794. https://doi.org/10.1016/j.gsd.2022.100794

    Article  Google Scholar 

  • Egbueri, J. C. (2022b). Incorporation of information entropy theory, artificial neural network, and soft computing models in the development of integrated industrial water quality index. Environmental Monitoring and Assessment, 194(10), 693. https://doi.org/10.1007/s10661-022-10389-x

    Article  Google Scholar 

  • El-Aziz, S. H. A. (2018). Water conservation & management (WCM) application of traditional method and water quality index to assess suitability of groundwater quality for drinking and irrigation purposes in south-western region of Libya. 2(2), 20–32

  • Fabre, J. (1976). Introduction à la géologie du Sahara d'Algérie et des régions voisines. SNED, Alger, p. 421.

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Printice-Hall.

    Google Scholar 

  • Gaillardet, J., Dupre, B., Louvat, P., & Allegre, C. J. (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 59, 3–30.

    Article  Google Scholar 

  • Garrels, R. M., & Mackenzie, F. T. (1967). Origin of the chemical compositions of some springs and lakes. In: Stumm, W. (Ed.), Equilibrium Concepts in Natural Water Systems, vol. 67. Advan. Chem., pp. 222–242

  • Gautam, V. K., Pande, C. B., Moharir, K. N., Varade, A. M., Rane, N. L., Egbueri, J. C., & Alshehri, F. (2023). Prediction of sodium hazard of irrigation purpose using artificial neural network modelling. Sustainability, 15(9), 7593. https://doi.org/10.3390/su15097593

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170, 1088–1090.

    Article  CAS  Google Scholar 

  • Hao, C., Jiading, W., Fei, Z., Yaxing, Z., & Chunying, X. (2022). Hydrochemical characteristics and formation mechanisms of groundwater in West Zoucheng City, Shandong Province, China. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-022-10136-2

    Article  Google Scholar 

  • Hao, Q., Yong, X., Kang, C., & Zhu, Y. (2020). Comprehensive understanding of groundwater geochemistry and suitability for sustainable drinking purposes in confined aquifers of the Wuyi Region, Central North China Plain. Water, 12(11), 3052. https://doi.org/10.3390/w12113052

    Article  CAS  Google Scholar 

  • Hasani, K., Hadi, S., & Mehdi, V. N. (2021). Scaling and corrosion potential in drinking water distribution systems of Meshginshahr City, Iran using Langelier saturation index and Ryznar stability index. Journal of Advances in Environmental Health Research. https://doi.org/10.32598/JAEHR.9.3.1210

    Article  Google Scholar 

  • He, M. Y., Dong, J. B., Jin, Z., Liu, C. Y., Xiao, J., Zhang, F., Sun, H., Zhao, Z. Q., Gou, L. F., Liu, W. G., & Luo, C. G. (2021). Pedogenic processes in loess-paleosol sediments: Clues from Li isotopes of leachate in Luochuan loess. Geochimica Et Cosmochimica Acta, 299, 151–162. https://doi.org/10.1016/j.gca.2021.02.021

    Article  CAS  Google Scholar 

  • Horton, R. K. (1965). An index number system for rating water quality. Journal—Water Pollution Control Federation, 37, 300–305.

    Google Scholar 

  • Hounslow, A. (2018). Water quality data: Analysis and interpretation. CRC Press.

    Book  Google Scholar 

  • Jamshidzadeh, Z. (2021). An integrated approach of hydrogeochemistry, statistical analysis, and drinking water quality index for groundwater assessment. Environmental Processes. https://doi.org/10.1007/s40710-020-00450-7

    Article  Google Scholar 

  • Jasechko, S., Kirchner, J. W., Welker, J. M., & McDonnell, J. J. (2016). Substantial proportion of global streamflow less than three months old. Nature Geoscience, 9, 126–129. https://doi.org/10.1038/ngeo2636

    Article  CAS  Google Scholar 

  • Karmakar, B., Singh, M. K., Choudhary, B. K., Singh, S. K., Egbueri, J. C., Gautam, S., & Rawat, S. K. (2021). Investigation of the hydrogeochemistry, groundwater quality and associated health risks in industrialized regions of Tripura, northeast India. Environmental Forensics. https://doi.org/10.1080/15275922.2021.2006363

    Article  Google Scholar 

  • Kaur, L., Madhuri, S., Rishi, S. S., Bhavika, S., Renu, L., & Gagandeep, S. (2019). Hydrogeochemical characterization of groundwater in alluvial plains of river Yamuna in Northern India: An insight of controlling processes. Journal of King Saud University—Science, 31(4), 1245–1253. https://doi.org/10.1016/j.jksus.2019.01.005

    Article  Google Scholar 

  • Kebili, M., Bouselsal, B., & Gouaidia, L. (2021). Hydrochemical characterization and water quality of the continental intercalare aquifer in the Ghardaïa Region (Algerian Sahara). Journal of Ecological Engineering, 22(10), 152–162.

    Article  Google Scholar 

  • Kelly, W. P. (1963). Use of saline irrigation water. Soil Science, 95(4), 355–391.

    Google Scholar 

  • Khalil, L., Adam, M., & Jeffrey, M. (2018). The groundwater risk index: Development and application in the Middle East and North Africa region. Science of the Total Environment, 628–629(2018), 1149–1164.

    Google Scholar 

  • Khan, M. Y. A., ElKashouty, M., Abdellattif, A., Egbueri, J. C., Taha, A. I., Al Deep, M., & Shaaban, F. (2023a). Influence of natural and anthropogenic factors on the hydrogeology and hydrogeochemistry of Wadi Itwad Aquifer, Saudi Arabia: Assessment using multivariate statistics and PMWIN simulation. Ecological Indicators, 151, 110287. https://doi.org/10.1016/j.ecolind.2023.110287

    Article  CAS  Google Scholar 

  • Khan, M. Y. A., ElKashouty, M., Zaidi, F. K., & Egbueri, J. C. (2023b). Mapping aquifer recharge potential zones (ARPZ) using integrated geospatial and analytic hierarchy process (AHP) in an arid region of Saudi Arabia. Remote Sensing, 15(10), 2567. https://doi.org/10.3390/rs15102567

    Article  Google Scholar 

  • Kharroubi, M., Bouselsal, B., Ouarekh, M., Benaabidate, L., & Khadri, R. (2022). Water quality assessment and hydrogeochemical characterization of the Ouargla complex terminal aquifer (Algerian Sahara). Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-022-09438-z

    Article  Google Scholar 

  • Kilian, C. (1932). Sur des conglomérats précambriens du Sahara Central: le Pharusien et le Suggarien. - C.R. Somm. Soc. Géol, Fr. Paris 7, 87–88

  • Li, J., Zhou, N., Sun, J., Zhou, S., Bai, Z., Lu, L., Chen, Q., & Zuo, C. (2022a). Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy. Light: Science & Applications, 11(1), 154. https://doi.org/10.1038/s41377-022-00815-7

    Article  CAS  Google Scholar 

  • Li, Q., Lu, L., Zhao, Q., & Hu, S. (2023). Impact of inorganic solutes' release in groundwater during oil shale in situ exploitation. Water, 15(1), 172. https://doi.org/10.3390/w15010172

    Article  CAS  Google Scholar 

  • Li, Y., Qian, J., Feng, S., Chen, Q., & Zuo, C. (2022b). Deep-learning-enabled dual-frequency composite fringe projection profilometry for single-shot absolute 3D shape measurement. Opto-Electronic Advances, 5(5), 210021. https://doi.org/10.29026/oea.2022.210021

    Article  CAS  Google Scholar 

  • Madi, M., Meddi, M., & Boutoutaou, D. (2016). Assessment of aquifer vulnerability using a geophysical approach in hyper-arid zones. A case study (In Salah region, Algeria). Arabian Journal of Geosciences, 9, 460. https://doi.org/10.1007/s12517-016-2489-4

    Article  Google Scholar 

  • Marandi, A., & Shand, P. (2018). Groundwater chemistry and the Gibbs diagram. Applied Geochemistry, 97, 209–212. https://doi.org/10.1016/j.apgeochem.2018.07.009

    Article  CAS  Google Scholar 

  • McMahon, T. A. (1979). Hydrological characteristics of arid zones. In Proceedings of a Symposium on the Hydrology of Areas of Low Precipitation, Canberra. IAHS Publ. 128, 105–123.

  • Meireles, A., Andrade, E. M., Chaves, L., Frischkorn, H., & Crisostomo, L. A. (2010). A new proposal of the classification of irrigation water. Revista Ciencia Agronomica Journal, 413, 349–357.

    Article  Google Scholar 

  • Mgbenu, C. N., & Egbueri, J. C. (2019). The hydrogeochemical signatures, quality indices and health risk assessment of water resources in Umunya district, southeast Nigeria. Applied Water Science, 9(1), 22. https://doi.org/10.1007/s13201-019-0900-5

    Article  CAS  Google Scholar 

  • Moulla, A. S., Guendouz, A., Cherchali, M. H., Chaid, Z., & Ouarezki, S. (2012). Updated geochemical and isotopic data from the Continental Intercalaire aquifer in the Great Occidental Erg sub-basin (south-western Algeria). Quaternary International, 257, 64–73.

    Article  Google Scholar 

  • Moussaoui, T., Derdour, A., Hosni, A., Ballesta-de los Santos, M., Legua, P., & Pardo-Picazo, M. Á. (2023). Assessing the quality of treated wastewater for irrigation: A case study of Ain Sefra wastewater treatment plant. Sustainability, 15(14), 11133. https://doi.org/10.3390/su151411133

    Article  CAS  Google Scholar 

  • Nguyen, C.K., Clark, B.N., Stone, K.R., Edwards, M.A. (2011). Role of chloride, sulfate, and alkalinity on galvanic lead corrosion. Corros. J. 67(6), 065005–1–065005-9. https://doi.org/10.5006/1.3600449.

  • Office National de Météorologie (ONM). (2022). Données des paramètres hydroclimatiques sur tout le territoire national. Bulletins mensuels édités par l’ONM (Algérie). 2000–2021.

  • Omeka, M. E., & Egbueri, J. C. (2023). Hydrogeochemical assessment and health-related risks due to toxic element ingestion and dermal contact within the Nnewi-Awka urban areas, Nigeria. Environmental Geochemistry and Health, 45(5), 2183–2211. https://doi.org/10.1007/s10653-022-01332-7

    Article  CAS  Google Scholar 

  • Onjia, A., Huang, X., Trujillo González, J. M., & Egbueri, J. C. (2022). Editorial: Chemometric approach to distribution, source apportionment, ecological and health risk of trace pollutants. Frontiers in Environmental Science, 10, 1107465. https://doi.org/10.3389/fenvs.2022.1107465

    Article  Google Scholar 

  • OSS (Observatoire Sahara et Sahel). (2003). Système aquifère du Sahara septentrional: gestion commune d’un bassin transfrontière. Rapport de synthèse, OSS, Tunisie

  • Ouarekh, M., Bouselsal, B., Belksier, M. S., & Benaabidate, L. (2021). Water quality assessment and hydrogeochemical characterization of the Complex Terminal aquifer in Souf valley, Algeria. Arabian Journal of Geosciences, 14, 2239. https://doi.org/10.1007/s12517-021-08498-x

    Article  CAS  Google Scholar 

  • Ould Baba, S. M. (2005). Recharge et paléorecharge du système aquifère du Sahara septentrional. Doctoral Thesis in Geology. Tunisie. p. 277

  • Piper, A. M. (1944). Graphical interpretation of water analysis. Transactions of the American Geophysical Union, 25, 914–923.

    Article  Google Scholar 

  • Qiu, D., Zhu, G., Bhat, M. A., Wang, L., Liu, Y., Sang, L., Lin, X., Zhang, W., & Sun, N. (2023). Water use strategy of nitraria tangutorum shrubs in ecological water delivery area of the lower inland river: Based on stable isotope data. Journal of Hydrology, 624, 129918. https://doi.org/10.1016/j.jhydrol.2023.129918

    Article  CAS  Google Scholar 

  • Raghunath, H. M. (1987). Groundwater. New Age International (P) Ltd. Publishers.

    Google Scholar 

  • Rajmohan, N., Masoud, M. H. Z., & Niyazi, B. A. M. (2021). Assessment of groundwater quality and associated health risk in the arid environment, Western Saudi Arabia. Environmental Science and Pollution Research, 28, 9628–9646. https://doi.org/10.1007/s11356-020-11383-x

    Article  CAS  Google Scholar 

  • Remini, B., Kechad, R. & Achour, B. (2014). The collecting of groundwater by the qanats: a millennium technique decaying. Larhyss Journal, n°20, Décembre, 259–277

  • Remini, B., Achour, B., & Kechad, R. (2010). La foggara en Algérie: Un patrimoine hydraulique mondial. Journal of Water Science (RSE), 23(2), 105–117.

    Google Scholar 

  • Ren, X., Li, P., He, X., Su, F., & Elumalai, V. (2021). Hydrogeochemical pro- cesses affecting groundwater chemistry in the central part of the Guanzhong Basin, China. Archives of Environmental Contamination and Toxicology, 80(1), 74–91. https://doi.org/10.1007/s00244-020-00772-5

    Article  CAS  Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline alkali soils. US Department of Agriculture, Handbook no. 60.

  • Rodier, J., Brazin, C., Broutin, J.P., Chambon, P., Champsaur, H., Rodi, L. (1996). L’analyse de l’eau, 8ème édition. DUNOD, Paris, France.

  • Roy, B., Pramanik, M., & Manna, A. K. (2023). Hydrogeochemistry and quality evaluation of groundwater and its impact on human health in North Tripura, India. Environmental Monitoring and Assessment, 195, 39. https://doi.org/10.1007/s10661-022-10642-3

    Article  CAS  Google Scholar 

  • Satouh, A., Bouselsal, A., Chellat, S., & Benaabidate, I. (2021). Determination of groundwater vulnerability using the DRASTIC method in Ouargla Shallow Aquifer (Algerian Sahara). Journal of Ecological Engineering, 22(6), 1–8. https://doi.org/10.12911/22998993/137680

    Article  Google Scholar 

  • Schoeller, H. (1965). Qualitative evaluation of groundwater resources. Methods and Techniques of Groundwater Investigations and Development; UNESCO: Paris, France, Volume 5483.

  • Schoeller, H. (1977). Geochemistry of groundwater. In Ground water studies-An international guide for research and practice; UNESCO: Paris, France, Volume 5483.

  • Shah, I. A., Ashwani, K. S., Nawal, K., & Dalchand, J. (2021). Evaluation of groundwater quality in Jampali Coal Mine, Raigarh, Chhattisgarh, India. Environmental Quality Management. https://doi.org/10.1002/tqem.21767

    Article  Google Scholar 

  • Shahab, A., Qi, S., Audil, R., Faizan, U. H., & Muhammad, T. S. (2016). Evaluation of water quality for drinking and agricultural suitability in the lower indus plain in Sindh Province, Pakistan. Polish Journal of Environmental Studies, 25(6), 2563–2574. https://doi.org/10.15244/pjoes/63777

    Article  CAS  Google Scholar 

  • Shahmohammadi, S., Asadollah, N., Shafieh, K., Ata, A., & Behzad, S. (2018). A study on corrosion and scaling potential of drinking water supply resources in rural areas of Sarvabad, West of Iran. Journal of Advances in Environmental Health Research. https://doi.org/10.22102/jaehr.2018.98342.1037

    Article  Google Scholar 

  • Shaikh, H., Gaikwad, H., & Kadam, A. (2020). Hydrogeochemical characterization of groundwater from semiarid region of western India for drinking and agricultural purposes with special reference to water quality index and potential health risks assessment. Applied Water Science, 10, 204. https://doi.org/10.1007/s13201-020-01287-z

    Article  CAS  Google Scholar 

  • Shang, Y., Song, K., Lai, F., Lyu, L., Liu, G., Fang, C., Hou, J., Qiang, S., Yu, X., & Wen, Z. (2023). Remote sensing of fluorescent humification levels and its potential environmental linkages in lakes across China. Water Research, 230, 119540. https://doi.org/10.1016/j.watres.2022.119540

    Article  CAS  Google Scholar 

  • Shankar, S., & Shanker, U. (2014). Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. The scientific world journal, 2014, 304524. https://doi.org/10.1155/2014/304524

  • She, Q., Hu, R., Xu, J., Liu, M., Xu, K., & Huang, H. (2022). Learning high-DOF reaching-and-grasping via dynamic representation of gripper-object interaction. ACM Trans. Graph. https://doi.org/10.1145/3528223.3530091

    Article  Google Scholar 

  • Simsek, C., Gunduz, O. (2007). IWQ index: a GIS-integrated technique to assess irrigation water quality. Environ Monit Assess, 128, 277–300. https://doi.org/10.1007/s10661-006-9312-8

  • Singh, G., Rishi, M. S., & Arora, N. K. (2019). Integrated GIS-based modelling approach for irrigation water quality suitability zonation in parts of Satluj River Basin, Bist Doab region, North India. SN Applied Sciences, 1, 1438. https://doi.org/10.1007/s42452-019-1405-4

    Article  CAS  Google Scholar 

  • Singh, G., Singh, J., Wani, O. A., Egbueri, J. C., & Agbasi, J. C. (2024). Assessment of groundwater suitability for sustainable irrigation: A comprehensive study using indexical, statistical, and machine learning approaches. Groundwater for Sustainable Development, 24, 101059. https://doi.org/10.1016/j.gsd.2023.101059

    Article  Google Scholar 

  • Singh, G., Wani, O. A., Egbueri, J. C., Salaria, A., & Singh, H. (2023). Seasonal variation of the quality of groundwater resources for human consumption and industrial purposes in the central plain zone of Punjab, India. Environmental Monitoring and Assessment, 195(12), 1454. https://doi.org/10.1007/s10661-023-12039-2

    Article  CAS  Google Scholar 

  • Soomar, M., Samtio, K., Hussain, R., & Asghar, A. (2022). Impact of water—Sediment interaction on hydrogeochemical signature of dug well aquifer by using geospatial and multivariate statistical techniques of Islamkot Sub-District, Tharparkar District, Sindh. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-022-09436-1

    Article  Google Scholar 

  • Stets, E. G., Lee, C. J., Lytle, D. A., & Schock, M. R. (2017). Increasing chloride in rivers of the con- terminous U.S. and linkages to potential corrosivity and lead action level exceedances in drinking water. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2017.07.119.

  • Subba Rao, N. (2021). Spatial distribution of quality of groundwater and probabilistic non-carcinogenic risk from a rural dry climatic region of South India. Environmental Geochemistry and Health, 43, 971–993. https://doi.org/10.1007/s10653-020-00621-3

    Article  CAS  Google Scholar 

  • Tian, H., Huang, N., Niu, Z., Qin, Y., Pei, J., & Wang, J. (2019). Mapping winter crops in china with multi-source satellite imagery and phenology-based algorithm. Remote Sensing (basel, Switzerland), 11(7), 820. https://doi.org/10.3390/rs11070820

    Article  Google Scholar 

  • Tian, H., Pei, J., Huang, J., Li, X., Wang, J., Zhou, B., Qin, Y., & Wang, L. (2020). Garlic and winter wheat identification based on active and passive satellite imagery and the Google Earth Engine in Northern China. Remote Sensing (basel, Switzerland), 12(3539), 3539. https://doi.org/10.3390/rs12213539

    Article  Google Scholar 

  • Todd, D. K. (1959). Groundwater hydrology (1st ed., p. 336). Hoboken.

    Google Scholar 

  • Touahri, M., Belksier, M. S., Boualem, B., & Kebili, M. (2022). Groundwater quality assessment of Hassi Messaoud Region (Algerian Sahara). Journal of Ecological Engineering, 23(11), 165–178. https://doi.org/10.12911/22998993/153396

    Article  Google Scholar 

  • Ukah, B., Egbueri, J., Unigwe, C., Ubido, O. (2019). Extent of heavy metals pollution and health risk assessment of groundwater in a densely populated industrial area, Lagos. Nigeria. Int J Energ and Water Resour 3, 291–303.

  • UNESCO. (1972). Etude des Ressources en Eau de Sahara Septentrional. UNESCO.

    Google Scholar 

  • USEPA. (1994). Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, 3rd ed. EPA/600/491/002. USEPA, Environmental Monitoring Systems Laboratory.

  • USSL (U.S. Salinity Laboratory Staff). (1954). Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agric. Handbook No.60, 160 p.

  • Wen, Z., Wang, Q., Ma, Y., Jacinthe, P. A., Liu, G., Li, S., Shang, Y., Tao, H., Fang, C., Lyu, L., & Zhang, B. (2024). Remote estimates of suspended particulate matter in global lakes using machine learning models. International Soil and Water Conservation Research, 12(1), 200–216. https://doi.org/10.1016/j.iswcr.2023.07.002

    Article  Google Scholar 

  • WHO. (2017). World health statistics 2017: Monitoring health for the SDGs, sustainable development goals. World Health Organization; 2017. License: CC BY-NC-SA 3.0 IGO.

  • Wilcox, L. V. (1955). The quality of water for irrigation use. US Dept. of Agric. Tech Bull. (1962)

  • Wu, X., Feng, X., Wang, Z., Chen, Y., & Deng, Z. (2023). Multi-source precipitation products assessment on drought monitoring across global major river basins. Atmospheric Research, 295, 106982. https://doi.org/10.1016/j.atmosres.2023.106982

    Article  Google Scholar 

  • Xiao, Y., Dian, X., Qichen, H., Kui, L., Rui, W., Xun, H., Xin, L., & Yunhui, Z. (2021). Accessible phreatic groundwater resources in the Central Shijiazhuang of North China Plain: Perspective from the hydrogeochemical constraints. Frontiers in Environmental Science, 9(October), 1–16. https://doi.org/10.3389/fenvs.2021.747097

    Article  Google Scholar 

  • Yang, M., Wang, H., Hu, K., Yin, G., & Wei, Z. (2022). IA-Net: An inception–attention-module-based network for classifying underwater images from others. IEEE Journal of Oceanic Engineering, 47(3), 704–717. https://doi.org/10.1109/JOE.2021.3126090

    Article  Google Scholar 

  • Yin, L., Wang, L., Li, J., Lu, S., Tian, J., Yin, Z., Liu, S., & Zheng, W. (2023a). YOLOV4_CSPBi: Enhanced land target detection model. Land, 12(9), 1813. https://doi.org/10.3390/land12091813

    Article  Google Scholar 

  • Yin, L., Wang, L., Li, T., Lu, S., Tian, J., Yin, Z., Li, X., & Zheng, W. (2023b). U-Net-LSTM: Time series-enhanced lake boundary prediction model. Land, 12(10), 1859. https://doi.org/10.3390/land12101859

    Article  Google Scholar 

  • Zhang, J., Zhu, C., Zheng, L., & Xu, K. (2021a). ROSEFusion: Random optimization for online dense reconstruction under fast camera motion. ACM Transactions on Graphics, 40(4), 1–17. https://doi.org/10.1145/3450626.3459676

    Article  Google Scholar 

  • Zhang, S., Bai, X., Zhao, C., Tan, Q., Luo, G., Wang, J., Li, Q., Wu, L., Chen, F., Li, C., & Deng, Y. (2021b). Global CO2 consumption by silicate rock chemical weathering: Its past and future. Earth’s Future, 9(5), e1938E-e2020E. https://doi.org/10.1029/2020EF001938

    Article  Google Scholar 

  • Zheng, H., Fan, X., Bo, W., Yang, X., Tjahjadi, T., & Jin, S. (2023). A Multiscale point-supervised network for counting maize tassels in the wild. Plant Phenomics, 5, 100. https://doi.org/10.34133/plantphenomics.0100

    Article  Google Scholar 

  • Zhou, G., Li, H., Song, R., Wang, Q., Xu, J., & Song, B. (2022a). Orthorectification of fisheye image under equidistant projection model. Remote Sensing, 14(17), 4175. https://doi.org/10.3390/rs14174175

    Article  Google Scholar 

  • Zhou, G., & Liu, X. (2022). Orthorectification model for extra-length linear array imagery. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2022.3223911

    Article  Google Scholar 

  • Zhou, G., Wang, Q., Huang, Y., Tian, J., Li, H., & Wang, Y. (2022b). True orthoimage map generation. Remote Sensing, 14(17), 4396. https://doi.org/10.3390/rs14174396

    Article  Google Scholar 

  • Zhu, G., Liu, Y., Shi, P., Jia, W., Zhou, J., Liu, Y., Ma, X., Pan, H., Zhang, Y., Zhang, Z., & Sun, Z. (2022). Stable water isotope monitoring network of different water bodies in Shiyang River basin, a typical arid river in China. Earth System Science Data, 14(8), 3773–3789. https://doi.org/10.5194/essd-14-3773-2022

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Author contribution: Both authors contributed substantially in the data analysis, writing, review, editing, revision, and approval of the manuscript.

Corresponding author

Correspondence to Johnbosco C. Egbueri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boualem, B., Egbueri, J.C. Graphical, statistical and index-based techniques integrated for identifying the hydrochemical fingerprints and groundwater quality of In Salah, Algerian Sahara. Environ Geochem Health 46, 158 (2024). https://doi.org/10.1007/s10653-024-01931-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-024-01931-6

Keywords

Navigation