Skip to main content

Advertisement

Log in

Incorporation of information entropy theory, artificial neural network, and soft computing models in the development of integrated industrial water quality index

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Keeping purpose and targeted end-users in perspective, several water quality indices have been developed over the past decades to summarily convey water quality information to decision-makers and the general public. Industrial water quality is often analyzed based on the corrosion and scaling potentials (CSPs) of water. The commonly used CSP index parameters are chloride–sulfate mass ratio, Langelier index, Larson-Skold index, aggressive index, Ryznar stability index, and Puckorius scaling index. Simultaneous application of these index parameters often classifies a sample into multiple water quality categories, thereby introducing bias in assessment and decision-making. No previous numerical model integrated the CSP indices to provide a single, composite index value for a more unbiased interpretation of industrial water quality. Therefore, this paper proposes an integrated industrial water quality index (IIWQI) that integrates the six CSP index parameters for direct and concise assessment of industrial water resources. To achieve its aim, this research incorporated information entropy theory and soft computing techniques. The developed IIWQI was applied to water samples from southeastern Nigeria. Different classification groups were observed based on the six CSP indices. However, the IIWQI summarized the classifications of the water samples into three categories: Class 1 (28.57%, slight-medium corrosivity, significant scaling potential); Class 2 (46.43%, medium–high corrosivity, no scaling); and Class 3 (25.00%, high-very high corrosion, no scaling). Correlation analysis revealed the relationships between the physicochemical variables, CSP index parameters, IIWQI, and the entropy-based variability of the IIWQI. The spatiotemporal water quality groups were revealed by Q-mode hierarchical dendrograms. Multiple linear regression and two multilayer perceptron neural networks accurately predicted the IIWQI. The findings of this paper could help in better evaluation, interpretation, and management of industrial water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable. All the data used in this paper are provided herein.

References

  • Abba, S. I., Pham, Q. B., Saini, G., Linh, N. T. T., Ahmed, A. N., Mohajane, M., Khaledian, M., Abdulkadir, R. A., & Bach, Q. (2020). Implementation of data intelligence models coupled with ensemble machine learning for prediction of water quality index. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-09689-x

    Article  Google Scholar 

  • Abbasi, T., & Abbasi, S. A. (2012). Water quality indices. Elsevier.

    Google Scholar 

  • Abbasnia, A., Yousefi, N., Mahvi, A. H., Nabizadeh, R., Radfard, M., Yousefi, M., et al. (2018). Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes: Case study of Sistan and Baluchistan province (Iran). Human and Ecological Risk Assessment. https://doi.org/10.1080/10807039.2018.1458596

    Article  Google Scholar 

  • Abyaneh, H. Z., Varkeshi, M. B., Mohammadi, K., Howard, K., & Marofi, S. (2011). Assessment of groundwater corrosivity in Hamedan Province, Iran using an adaptive neuro-fuzzy inference system (ANFIS). Geosciences Journal, 15(4), 433–439. https://doi.org/10.1007/s12303-011-0032-x

    Article  CAS  Google Scholar 

  • Agatemor, C., & Okolo, P. O. (2008). Studies of corrosion tendency of drinking water in the distribution system at the University of Benin. The Environmentalist, 28, 379–384. https://doi.org/10.1007/s10669-007-9152-2

    Article  Google Scholar 

  • Aghazadeh, N., Chitsazan, M., & Golestan, Y. (2017). Hydrochemistry and quality assessment of groundwater in the Ardabil area Iran. Applied Water Science, 7, 3599–3616. https://doi.org/10.1007/s13201-016-0498-9

    Article  CAS  Google Scholar 

  • Al Osman, M., Yang, F., & Massey, I. Y. (2019). Exposure routes and health effects of heavy metals on children. BioMetals, 32(4), 563–573.

    Article  CAS  Google Scholar 

  • Amiri, V., Rezaei, M., & Sohrabi, N. (2014). Groundwater quality assessment using entropy weighted water quality index (EWQI) in Lenjanat Iran. Environmental Earth Sciences, 72(9), 3479–3490.

    Article  CAS  Google Scholar 

  • Anatole, D. (1996). Physical geology. Lexington.

    Google Scholar 

  • Anyanwu, B. O., Ezejiofor, A. N., Igweze, Z. N., & Orisakwe, O. E. (2018). Heavy metal mixture exposure and effectsin developing nations: An update. Toxics, 6(4), 65.

    Article  CAS  Google Scholar 

  • Atasoy, A. D., & Yesilnacar, M. I. (2010). Effect of high sulfate concentration on the corrosivity: A case study from groundwater in Harran Plain, Turkey. Environmental Monitoring and Assessment, 166, 595–607.

    Article  CAS  Google Scholar 

  • Chen, W., & Liu, W. (2015). Water quality modeling in reservoirs using multivariate linear regression and two neural network models. Advances in Artificial Neural Systems. https://doi.org/10.1155/2015/521721

    Article  Google Scholar 

  • Edwards, M., & Triantafyllidou, S. (2007). Chloride-to-sulfate mass ratio and lead leaching to water. Journal-American Water Works Association, 99(7), 96–109.

    Article  CAS  Google Scholar 

  • Egbueri, J. C., Mgbenu, C. N., & Chukwu, C. N. (2019). Investigating the hydrogeochemical processes and quality of water resources in Ojoto and environs using integrated classical methods. Modeling Earth Systems and Environment, 5(4), 1443–1461. https://doi.org/10.1007/s40808-019-00613-y

    Article  Google Scholar 

  • Enyoh, C. E., Andrew, W. V., & Ngozi, J. E. (2018). pH variation and chemometric assessment of borehole water in Orji, Owerri, Imo state Nigeria. Journal of Environmental and Analytical Chemistry, 5, 2. https://doi.org/10.4172/2380-2391.1000238

    Article  Google Scholar 

  • Fagbote, E. O., Olanipekun, E. O., & Uyi, H. S. (2014). Water quality index of the groundwater of bitumen deposit impacted farm settlements using entropy weighted method. International Journal of Environmental Science and Technology, 11(1), 127–138.

    Article  CAS  Google Scholar 

  • Fetter, C. W. (1990). Applied hydrogeology. Mirril Publishing Company.

    Google Scholar 

  • Hameed, M., Sharqi, S. S., Yaseen, Z. M., Afan, H. A., Hussain, A., & Elshafie, A. (2017). Application of artificial intelligence (AI) techniques in water quality index prediction: A case study in tropical region Malyasia. Neural Computing & Applications, 28(1), 893–905.

    Article  Google Scholar 

  • Hsueh, Y. M., Lee, C. Y., Chien, S. N., Chen, W. J., Shiue, H. S., Huang, S. R., Lin, M. I., Mu, S. C., & Hsieh, R. L. (2017). Association of blood heavy metals with developmental delays and health status in children. Science and Reports, 7(1), 43608.

    Article  Google Scholar 

  • Hwang, J. Y., et al. (2017). Applications of hydrochemical models for the assessment of groundwater. Environment and Natural Resources Research, 20(3), 156–173.

    Google Scholar 

  • Ighalo, J. O., Adeniyi, A. G., & Marques, G. (2020). Artificial intelligence for surface water quality monitoring and assessment: A systematic literature analysis. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-020-01041-z

    Article  Google Scholar 

  • Igwe, O., & Omeka, M. E. (2021). Hydrogeochemical and pollution assessment of water resources within a mining area, SE Nigeria, using an integrated approach. International Journal of Energy and Water Resources, 6(2), 161–182.

    Article  Google Scholar 

  • Isiyaka, H. A., Mustapha, A., Juahir, H., & Phil-Eze, P. (2019). Water quality modelling using artificial neural network and multivariate statistical techniques. Modeling Earth Systems and Environment, 5(2), 583–593. https://doi.org/10.1007/s40808-018-0551-9

    Article  Google Scholar 

  • Islam, A. R. M. T., Ahmed, N., Bodrud-Doza, M., & Chu, R. (2017). Characterizing groundwater quality ranks for drinking purposes in Sylhet district, Bangladesh, using entropy method, spatial autocorrelation index, and geostatistics. Environmental Science and Pollution Research, 24(34), 26350–26374.

    Article  CAS  Google Scholar 

  • Ismail, A. I. M., & El-Shamy, A. M. (2009). Engineering behavior of soil materials on the corrosion of mild steel. Applied Clay Science, 42, 356–362.

    Article  CAS  Google Scholar 

  • Juahir, H., Zain, S. M., Toriman, M. E., et al. (2004). Application of artificial neural network models for predicting water quality index. Malaysian Journal of Civil Engineering, 16, 42–55.

    Google Scholar 

  • Kadam, A. K., Wagh, V. M., Muley, A. A., Umrikar, B. N., & Sankhua, R. N. (2019). Prediction of water quality index using artificial neural network and multiple linear regression modelling approach in Shivganga River basin India. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-019-00581-3

    Article  Google Scholar 

  • Kaur, G., Mandal, A. K., Nihlani, M. C., & Lal, B. (2009). Control of sulfidogenic bacteria in produced water from the Kathloni oilfield in northeast India. International Biodeterioration and Biodegradation, 63, 151–155.

    Article  CAS  Google Scholar 

  • Khalid, G. M., & Usman, A. G. (2021). Application of data-intelligence algorithms for modeling the compaction performance of new pharmaceutical excipients. Future Journal of Pharmaceutical Sciences, 7, 31. https://doi.org/10.1186/s43094-021-00183-w

    Article  Google Scholar 

  • Krol, A., Mizerna, K., & Bozym, M. (2020). An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. Journal of Hazardous Materials, 384, 121502.

    Article  CAS  Google Scholar 

  • Langelier, W. F. (1936). The analytical control of anti-corrosion water treatment. Journal-American Water Works Association, 28(10), 1500–1521.

    Article  CAS  Google Scholar 

  • Larson, T. E., & Skold, R. V. (1958). Laboratory studies relating mineral quality of water to corrosion of steel and cast iron. Corrosion, 14(6), 43–46.

    Article  Google Scholar 

  • Li, P., Qian, H., & Wu, J. (2010). Groundwater quality assessment based on improved water quality index in Pengyang County, Ningxia Noethwest China. Journal of Chemistry, 7(S1), S209–S216.

    CAS  Google Scholar 

  • Mahmoud, K., Bebiş, H., Usman, A. G., Salihu, A. N., Gaya, M. S., Dalhat, U. F., Abdulkadir, R. A., Jibril, M. B., Abba, S. I. (2021). Prediction of the effects of environmental factors towards COVID-19 outbreak using AI-based models. IAES International Journal of Artificial Intelligence, 10(1), 35–42. https://doi.org/10.11591/ijai.v10.i1.pp35-42

  • Mankikar, T. Y. (2021). Comparison of indices for scaling and corrosion tendency of groundwater: Case study of unconfned aquifer from Mahoba District, U.P. State. Applied Water Science, 11, 94. https://doi.org/10.1007/s13201-021-01423-3

  • Martino, G. D., Fontana, N., Marini, G., & Singh, V. P. (2012). Variability and trend in seasonal precipitation in the continental United States. Journal of Hydrologic Engineering, 18(6), 630–640.

    Article  Google Scholar 

  • McFarland, M. L., Provin, T. L., Boellstorf, D. E. (2017). Drinking water problems: Corrosion, U.S.A: Texas AgriLife Extension Service and USDA National Institute of Food and Agriculture.

  • McGrane, K. (2020). Acidic water: risks, benefits, and more. https://www.healthline.com/nutrition/acidicwater. Accessed 30 Jun 2022.

  • Misaghi, F., Delgosha, F., Razzaghmanesh, M., & Myers, B. (2017). Introducing a water quality index for assessing water for irrigation purposes: A case study of the Ghezel Ozan River. Science of the Total Environment, 589, 107–116.

    Article  CAS  Google Scholar 

  • Mishra, A.K., Özger, M., & Singh, V.P. (2009). An entropy-based investigation into the variability of precipitation. Journal of  Hydrology, 370, 139–154. https://doi.org/10.1016/j.jhydrol.2009.03.006

  • Mukate, S. V., Panaskar, D. B., Wagh, V. M., & Baker, S. J. (2019). Understanding the influence of industrial and agricultural land uses on groundwater quality in semiarid region of Solapur. Environ Dev Sustain. https://doi.org/10.1007/s10668-019-00342-3

    Book  Google Scholar 

  • Najafzadeh, M., Ghaemi, A., & Emamgholizadeh, S. (2018). Prediction of water quality parameters using evolutionary computing-based formulations. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-018-2049-4

    Article  Google Scholar 

  • Nganje, T. N., Agbor, E. E., Adamu, C. I., Ukpong, A. J., Katte, B. F., Edet, A. E., & Hursthouse, A. S. (2020). Public health challenges as a result of contaminated water sources in Kumba Cameroon. Environmental Geochemistry and Health, 42(4), 1167–1195.

    Article  CAS  Google Scholar 

  • Nguyen, C. K., Clark, B. N., Stone, K. R., & Edwards, M. A. (2011). Role of chloride, sulfate, and alkalinity on galvanic lead corrosion. Corrosion, 10(5006/1), 3600449.

    Google Scholar 

  • Nhantumbo, C., Carvalho, F., Uvo, C., Larsson, R., & Larson, M. (2018). Applicability of a processes-based model and artificial neural networks to estimate the concentration of major ions in rivers. Journal of Geochemical Exploration, 193, 32–40.

  • NIS. (2007). Nigerian standard for drinking water quality. Nigerian Industrial Standard 554, 13–14.

  • Omeka, M. E., Egbueri, J. C., & Unigwe, C.O. (2022). Investigating the hydrogeochemistry, corrosivity and scaling tendencies of groundwater in an agrarian area (Nigeria) using graphical, indexical and statistical modelling. Arabian Journal of Geosciences, 15(13), 1233. https://doi.org/10.1007/s12517-022-10514-7

  • Ouma, Y. O., Okuku, C. O., Njau, E. N. (2020). Use of artificial neural networks and multiple linear regression model for the prediction of dissolved oxygen in rivers: Case study of hydrographic Basin of River Nyando, Kenya. Complexity. https://doi.org/10.1155/2020/9570789

  • Ozel, H. U., Gemici, B. T., Gemici, E., Ozel, H. B., Cetin, M., & Sevik, H. (2020). Application of artificial neural networks to predict the heavy metal contamination in the Bartin River. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-10156-w

  • Ozoko, D. C. (2015). Corrosion potentials of natural waters in Abakaliki, Ebonyi State Nigeria. Journal of Natural Sciences, 5(9), 108–114.

    Google Scholar 

  • Puckorius, P. R., & Brooke, J. M. (1991). A new practical index for calcium carbonate scale prediction in cooling tower systems. Corrosion, 47(4), 280–284.

    Article  CAS  Google Scholar 

  • Ryznar, J. W. (1944). A new index for determining the amount of calcium carbonate scale formed by a water. Journal American Water Works Association, 36, 472–475.

    Article  CAS  Google Scholar 

  • Sajil Kumar, P. J. (2019). Assessment of corrosion and scaling potential of the groundwater in the Thanjavur district using hydrogeochemical analysis and spatial modeling techniques. SN Applied Science. https://doi.org/10.1007/s42452-019-0423-6

    Article  Google Scholar 

  • Schock, M. R. (1999). Internal corrosion and deposition control. Water quality and treatment: A handbook of community water supplies. McGraw-Hill, USA, pp 1–17.

  • Shams, M., Mohamadi, A., & Sajadi, S. A. (2012). Evaluation of corrosion and scaling potential of water in rural water supply distribution networks of Tabas. World Applied Sciences Journal, 17(11), 1484–1489.

    CAS  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423 (623–656).

  • Sharma, N., Vaid, U., & Sharma, S. K. (2021). Assessment of groundwater quality for drinking and irrigation purpose using hydrochemical studies in Dera Bassi town and its surrounding agricultural area of Dera Bassi Tehsil of Punjab India. SN Applied Science, 3(245), 1–13.

    Google Scholar 

  • Sharpe, W. E., & DeWalle, D. R. (1985). Potential health implications for acid precipitation, corrosion, and metals contamination of drinking water. Environmental Health Perspectives, 63, 71–78.

    Article  CAS  Google Scholar 

  • Siddha, S., & Sahu, P. (2020). Assessment of groundwater quality and associated human health risk of Central Gujarat, India. Clean-Soil Air Water, 2000056, 1–17.

    Google Scholar 

  • Siddha, S., & Sahu, P. (2022). Evaluation of corrosivity and scaling properties of groundwater of Central Gujarat for industrial usage. Arabian Journal of Geosciences, 15, 891. https://doi.org/10.1007/s12517-022-10197-0

    Article  CAS  Google Scholar 

  • Silva, V. D. P. R., Belo Filho, A. F., Almeida, R. S. R., de Holanda, R. M., & da Cunha Campos, J. H. B. (2016). Shannon information entropy for assessing space–time variability of rainfall and streamflow in semiarid region. Science of the Total Environment, 544, 330–338.

    Article  Google Scholar 

  • Singh, B., Sihag, P., Singh, V. P., Sepahvand, A., & Singh, K. (2021). Soft computing techniques-based prediction of water quality index. Water Supply. https://doi.org/10.2166/ws.2021.157

    Article  Google Scholar 

  • Singh, K. R., Dutta, R., Kalamdhad, A. S., & Kumar, B. (2019a). Information entropy as a tool in surface water quality assessment. Environment and Earth Science, 78, 15. https://doi.org/10.1007/s12665-018-7998-x

    Article  CAS  Google Scholar 

  • Singh, K. R., Dutta, R., Kalamdhad, A. S., & Kumar, B. (2019b). An investigation on water quality variability and identification of ideal monitoring locations by using entropy based disorder indices. Science of the Total Environment, 647, 1444–1455. https://doi.org/10.1016/j.scitotenv.2018.07.463

    Article  CAS  Google Scholar 

  • Singh, K. R., Goswami, A. P., Kalamdhad, A. S., & Kumar, B. (2019c). Development of irrigation water quality index incorporating information entropy. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-019-00338-z

    Article  Google Scholar 

  • Singh, V. P. (2011). Hydrologic synthesis using entropy theory. Journal of Hydrologic Engineering, 16(5), 421–433.

    Article  Google Scholar 

  • Singh, V. P. (2013). Entropy theory and its application in environmental and water engineering. Wiley.

    Book  Google Scholar 

  • Singh, V. P. (2014). Entropy theory in hydraulic engineering: An introduction. American Society of Civil Engineers.

    Book  Google Scholar 

  • Stangierski, J., Weiss, D., & Kaczmarek, A. (2019). Multiple regression models and artificial neural network (ANN) as prediction tools of changes in overall quality during the storage of spreadable processed Gouda cheese. European Food Research and Technology, 245, 2539–2547. https://doi.org/10.1007/s00217-019-03369-y

    Article  CAS  Google Scholar 

  • Stets, E. G., Lee, C. J., Lytle, D. A., Schock, M. R. (2017). Increasing chloride in rivers of the conterminous U.S. and linkages to potential corrosivity and lead action level exceedances in drinking water. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2017.07.119

  • Swamee, P. K., & Tyagi, A. (2000). Describing water quality with aggregate index. Journal of Environmental Engineering, 126(5), 451–455.

    Article  CAS  Google Scholar 

  • Tang, Z., Hong, S., Xiao, W., & Taylor, J. (2006). Characteristics of iron corrosion scales established under blending of ground, surface, and saline waters and their impacts on iron release in the pipe distribution system. Corrosion Science, 48, 322–342.

    Article  CAS  Google Scholar 

  • Tavanpour, N., Noshadi, M., & Tavanpour, N. (2016). Scale formation and corrosion of drinking water pipes: A case study of drinking water distribution system of Shiraz City. Modern Applied Science. https://doi.org/10.5539/mas.v10n3p166

    Article  Google Scholar 

  • US-EPA. (1984). Corrosion manual for internal corrosion of water distribution systems, United States Environmental Protection Agency (US-EPA), Washington, DC.

  • Vasconcelos, H. C., et al. (2015). Characterization of the corrosive action of mineral waters from thermal sources: A case study at Azores Archipelago, Portugal. Water, 7, 3515–3530.

    Article  CAS  Google Scholar 

  • Wagh, V. M., Panaskar, D. B., Muley, A. A., Mukate, S. V., Lolage, Y. P., & Aamalawar, M. L. (2016). Prediction of groundwater suitability for irrigation using artificial neural network model: A case study of Nanded tehsil, Maharashtra India. Modeling Earth Systems and Environment, 2(4), 1–10.

    Article  Google Scholar 

  • Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of American Statistical Association, 58(301), 236–244.

    Article  Google Scholar 

  • WHO. (2011). Hardness in drinking-water: Background document for development of WHO guidelines for drinking-water quality. World Health Organization.

    Google Scholar 

  • WHO. (2017). Guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva.

  • Wu, P., & Tan, M. (2012). Challenges for sustainable urbanization: A case study of water shortage and water environment changes in Shandong, China. Procedia Environmental Sciences, 13, 919–927.

    Article  Google Scholar 

  • Zhou, Q., Yang, N., Li, Y., Ren, B., Ding, X., Bian, H., & Yao, X. (2020). Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Global Ecology and Conservation, 22, e00925.

    Article  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the Editor and the two anonymous Reviewers that contributed great insights for the improvement of the manuscript.

Funding

The present work did not receive any external financial assistance from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnbosco C. Egbueri.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 164 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egbueri, J.C. Incorporation of information entropy theory, artificial neural network, and soft computing models in the development of integrated industrial water quality index. Environ Monit Assess 194, 693 (2022). https://doi.org/10.1007/s10661-022-10389-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10389-x

Keywords

Navigation