Skip to main content
Log in

Seasonal variation of the quality of groundwater resources for human consumption and industrial purposes in the central plain zone of Punjab, India

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Due to environmental pollution, climate change, and anthropogenic activities, the judicious use and regular assessment of the quality of groundwater for industrial, agricultural, and drinking purposes had gained a lot of attention across the globe. To assess the seasonal suitability of groundwater based on hydrochemistry and different quality indices, groundwater samples were collected and analyzed for different physicochemical parameters. Our findings indicated that the pH, electrical conductivity (EC), total dissolved solids (TDS), total hardness (TH), and calcium ion (Ca2+) content of groundwater were within acceptable limits of WHO and Bureau of Indian Standards (BIS) guidelines for drinking water. However, chloride content exceeded the acceptable levels, accounting for about 29.1% during the pre-monsoon and 15.3% during the post-monsoon period. Based on the water quality index (WQI), none of the water samples were deemed unsuitable for drinking purposes. However, when considering the synthetic pollution index (SPI), 100% of the samples were categorized as moderately polluted during both the pre-monsoon and post-monsoon periods. For industrial purpose suitability, 39.8 and 30.6% of the water samples had high corrosion tendency for pre-monsoon and post-monsoon seasons, respectively. Additionally, 77.5–93.4% of the total water samples were slightly affected by salinization on the basis of Revelle index. Generally, the groundwater quality for drinking purposes meets the WHO and BIS guidelines, with high corrosion potential for industrial use and slight salinization concerns in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  • Abba, S., Egbueri, J. C., Benaafi, M., Usman, J., Usman, A. G., & Aljundi, I. H. (2023). Fluoride and nitrate enrichment in coastal aquifers of the Eastern Province, Saudi Arabia: The influencing factors, toxicity, and human health risks. Chemosphere, 336, 139083. https://doi.org/10.1016/j.chemosphere.2023.139083

    Article  CAS  Google Scholar 

  • Abbasnia, A., Radfard, M., Mahvi, A. H., Nabizadeh, R., Yousefi, M., Soleimani, H., & Alimohammadi, M. (2018). Groundwater quality assessment for irrigation purposes based on irrigation water quality index and its zoning with GIS in the villages of Chabahar, Sistan and Baluchistan. Iran. Data in brief, 19, 623–631.

    Google Scholar 

  • Adimalla, N., & Wu, J. (2019). Groundwater quality and associated health risks in a semiarid region of south India: Implication to sustainable groundwater management. Human and Ecological Risk Assessment: An International Journal, 25(1–2), 191–216.

    CAS  Google Scholar 

  • Agatemor, C., & Okolo, P. O. (2008). Studies of corrosion tendency of drinking water in the distribution system at the University of Benin. The Environmentalist, 28, 379–384.

    Google Scholar 

  • Agbasi, J., Chukwu, C., Nweke, N., Uwajingba, H., Khan, M. Y. A., & Egbueri, J. C. (2023b). Water pollution indexing and health risk assessment due to PTE ingestion and dermal absorption for nine human populations in Southeast Nigeria. Groundwater for Sustainable Development, 21, 100921. https://doi.org/10.1016/j.gsd.2023.100921

    Article  Google Scholar 

  • Agbasi, J. C., Egbueri, J. C., Ayejoto, D. A., Unigwe, C. O., Omeka, M. E., Nwazelibe, V. E., Ighalo, J. O., Januraga, P. P., & Fakoya, A. A. (2023a) The impact of seasonal changes on the trends of physicochemical, heavy metal and microbial loads in water resources of Southeastern Nigeria: A critical review. In: Egbueri, J.C., Ighalo, J.O., Pande, C.B. (eds) Climate change impacts on Nigeria. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-031-21007-5_25

  • Akoteyon, I. S., Balogun, I. I., & Soneye, A. S. O. (2018). Integrated approaches to groundwater quality assessment and hydrochemical processes in Lagos, Nigeria. Applied Water Science, 8(7), 1–19.

    CAS  Google Scholar 

  • Arulbalaji, P., & Gurugnanam, B. (2017). Groundwater quality assessment using geospatial and statistical tools in Salem District, Tamil Nadu, India. Applied Water Science, 7(2017), 2737–2751.

    CAS  Google Scholar 

  • American Public Health Association (APHA) (2005) Standard methods for examination of water and wastewater. 21st ed. American Public Health Association, Washington DC American Public Health Association (APHA) (2017) Standard methods for the examination of water and wastewater, 23rd edn. American Public Health Association, Washington DC.

  • Aswal, R. S., Prasad, M., Patel, N. K., Srivastav, A. L., Egbueri, J. C., Kumar, G., & Ramola, R. C. (2023). Occurrences, sources and health hazard estimation of potentially toxic elements in the groundwater of Garhwal Himalaya, India. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-40266-7

  • Ayejoto, D. A., & Egbueri, J. C. (2023). Human health risk assessment of nitrate and heavy metals in urban groundwater in Southeast Nigeria. Acta Ecologica Sinica. https://doi.org/10.1016/j.chnaes.2023.06.008

    Article  Google Scholar 

  • Ayejoto, D. A., Egbueri, J. C., Agbasi, J. C., Omeka, M. E., Unigwe, C. O., Nwazelibe, V. E., Ighalo, J. O., & Pande, C.B. (2023). Influence of seasonal changes on the quality of water resources in Southwestern Nigeria: A review. In: Egbueri, J.C., Ighalo, J.O., Pande, C.B. (eds) Climate change impacts on Nigeria. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-031-21007-5_22

  • Bai, B., Rao, D., Chang, T., & Guo, Z. (2019). A nonlinear attachment-detachment model with adsorption hysteresis for suspension-colloidal transport in porous media. Journal of Hydrology, 578, 124080. https://doi.org/10.1016/j.jhydrol.2019.124080

    Article  CAS  Google Scholar 

  • Balakrishnan, B., Saleem, A., & Mallikarjun, N. D. (2011). Groundwater quality mapping using geographic information system (GIS): A case study of Gulbarga city, Karnataka, India. African Journal of Environmental Science and Technology, 5(12), 1069–1084.

    CAS  Google Scholar 

  • Belitz, K., Jurgens, B. C., & Johnson, T. D. (2016). Potential corrosivity of untreated groundwater in the United States (No. 2016-5092). US Geological Survey.

    Google Scholar 

  • BIS. (2012). Indian standard drinking water -specifcation (Second Revision) IS 10500; 2012. ICS 13.060.20. May 20125. © BIS 2012.

  • CGWB. (2007). Groundwater information booklet Kapurthala District Punjab (p. 20). Central Ground Water Board North Western Region.

    Google Scholar 

  • Cruse, H., & Pomeroy, R. D. (1974). Corrosion of Copper Pipes. Journal AWWA, 66(8), 479–483.

    CAS  Google Scholar 

  • Cui, E., Li, R., Crainiceanu, C. M., & Xiao, L. (2023). Fast multilevel functional principal component analysis. Journal of Computational and Graphical Statistics, 32(2), 366–377.

    Google Scholar 

  • Datta, P. S., & Tyagi, S. K. (1996). Major Ion Chemistry of Groundwater in Delhi Area: Chemical Weathering Processes and Groundwater Flow Regime. Journal of Geological Society of India, 47, 179–188.

    CAS  Google Scholar 

  • Davis, S. N., & DeWiest, R. J. (1966). Hydrogeology. Wiley.

    Google Scholar 

  • Domenico, P. A., & Schwartz, F. W. (1997). Physical and chemical hydrogeology. John wiley & sons.

    Google Scholar 

  • Ebrahimi, M., Kazemi, H., Ehtashemi, M., & Rockaway, T. D. (2016). Assessment of groundwater quantity and quality and saltwater intrusion in the Damghan basin, Iran. Geochemistry, 76(2), 227–241.

    CAS  Google Scholar 

  • Edwards, M., & Triantafyllidou, S. (2007). Chloride-Tosulfate Mass Ratio and Lead Leaching to Water. Journal of American Water Works Association, 99(7), 96–109.

    CAS  Google Scholar 

  • Egbueri, J. C. (2019). Water quality appraisal of selected farm provinces using integrated hydrogeochemical, multivariate statistical, and microbiological technique. Modeling Earth Systems and Environment, 5(3), 997–1013.

    Google Scholar 

  • Egbueri, J. C. (2022a). Incorporation of information entropy theory, artificial neural network, and soft computing models in the development of integrated industrial water quality index. Environmental Monitoring and Assessment, 194(10), 693.

    Google Scholar 

  • Egbueri, J. C. (2022b). Predicting and analysing the quality of water resources for industrial purposes using integrated data-intelligent algorithms. Groundwater for Sustainable Development, 18, 100794.

    Google Scholar 

  • Egbueri, J. C., & Unigwe, C. O. (2019). An integrated indexical investigation of selected heavy metals in drinking water resources from a coastal plain aquifer in Nigeria. SN Applied Sciences, 1(11), 1422.

    CAS  Google Scholar 

  • Egbueri, J. C., Ezugwu, C. K., Unigwe, C. O., Onwuka, O. S., Onyemesili, O. C., & Mgbenu, C. N. (2021a). Multidimensional analysis of the contamination status, corrosivity and hydrogeochemistry of groundwater from parts of the Anambra Basin, Nigeria. Analytical Letters, 54(13), 2126–2156.

    CAS  Google Scholar 

  • Egbueri, J. C., Mgbenu, C. N., Digwo, D. C., & Nnyigide, C. S. (2021b). A multi-criteria water quality evaluation for human consumption, irrigation and industrial purposes in Umunya area, southeastern Nigeria. International Journal of Environmental Analytical Chemistry, 103(14), 3351–3375.

    Google Scholar 

  • Egbueri, J. C., Enyigwe, M. T., & Ayejoto, D. A. (2022a). Modeling the impact of potentially harmful elements on the groundwater quality of a mining area (Nigeria) by integrating NSFWQI, HERisk code, and HCs. Environmental Monitoring and Assessment, 194(3). https://doi.org/10.1007/s10661-022-09789-w

  • Egbueri, J. C., Unigwe, C. O., Agbasi, J. C., & Nwazelibe, V. E. (2022b). Indexical and artificial neural network modeling of the quality, corrosiveness, and encrustation potential of groundwater in industrialized metropolises, Southeast Nigeria. Environment, Development and Sustainability, 3, 1–31.

    Google Scholar 

  • Elango Lakshmanan, E., Kannan, R., & Kumar, M. S. (2003). Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram district, Tamil Nadu, India. Environmental Geosciences, 10(4), 157–166.

    Google Scholar 

  • Ewaid, S. H., & Abed, S. A. (2017). Water quality index for Al-Gharraf river, southern Iraq. The Egyptian Journal of Aquatic Research, 43(2), 117–122.

    Google Scholar 

  • Fang, Y., Wang, H., Fang, P., Liang, B., Zheng, K., Sun, Q., Li, X., Ran, Z. H., & Wang, A. (2023). Life cycle assessment of integrated bioelectrochemical-constructed wetland system: Environmental sustainability and economic feasibility evaluation. Resources Conservation and Recycling, 189, 106740. https://doi.org/10.1016/j.resconrec.2022.106740

    Article  CAS  Google Scholar 

  • Ferguson, J.L., von Franque, O., Schock, M.R. (1996) Corrosion of copper in potable water systems. In: Internal corrosion of water distribution systems, 2nd edn. AWWA Research Foundation/DVGW–TZW, pp 231–268.

  • Fisher, S. R., & Mullican, W. F. (1997). Hydrogeochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the northern Chihuahua desert, Trans-Pecos, Texas, U.S.A. Hydrogeology Journal, 5(2), 4–16.

    Google Scholar 

  • Gantait, A., Das, S., Ghosh, S., Bohra, G., & Mukhopadhyay, S. (2022). Hydrogeochemical evolution and quality assessment of groundwater of Ajmer district, Rajasthan, India. Journal of Earth System Science, 131(4), 236.

    CAS  Google Scholar 

  • Garrels, R. M. (1976). A survey of low temperature water mineral relations. interpretation of environmental isotope and hydrogeochemical data in groundwater hydrology (pp. 65–84). International Atomic Energy Agency.

    Google Scholar 

  • Gregory, R. (1985). Galvanic corrosion of lead in copper pipework—Phase I, measurement of galvanic corrosion potential in selected waters (p. 74). Water Research Centre Engineering.

    Google Scholar 

  • Hedbery, T., & Johansson, E. (1987). Protection pipes against corrosion. Water Supply, 5(2/4), SS 20.

    Google Scholar 

  • Hem, J. D. (1989). Study and interpretation of the chemical characteristics of natural water (No. 1473). US Government Printing Office.

    Google Scholar 

  • Hitchon, B., Perkins, E. H., & Gunter, W. D. (1999). Introduction to ground water geochemistry (p. 237). Alberta: Geoscience Pub. Ltd.

    Google Scholar 

  • Hounslow, A. (1995). Water quality data: Analysis and interpretation. CRC Press.

    Google Scholar 

  • Hui, T., Xiujuan, L., Qifa, S., Qiang, L., Zhuang, K., & Yan, G. (2021). Evaluation of drinking water quality using the water quality index (WQI), the synthetic pollution index (SPI) and geospatial tools in Lianhuashan District, China. Polish Journal of Environmental Studies, 30(1), 141–153.

    Google Scholar 

  • Karanth, K. R. (1989). Hydrogeology. Tata McGraw-Hill Publishing Company.

    Google Scholar 

  • Karunanidhi, D., Aravinthasamy, P., Deepali, M., Subramani, T., Bellows, B. C., & Li, P. (2021). Groundwater quality evolution based on geochemical modeling and aptness testing for ingestion using entropy water quality and total hazard indexes in an urban-industrial area (Tiruppur) of Southern India. Environmental Science and Pollution Research, 28, 18523–18538.

    CAS  Google Scholar 

  • Khuhawar, M. Y., Brohi, R. O. Z., Jahangir, T. M., & Lanjwani, M. F. (2018). Water quality assessment of Ramsar site, Indus Delta, Sindh, Pakistan. Environmental Monitoring and Assessment, 190(492), 1–11.

    CAS  Google Scholar 

  • Krishan, A., Khursheed, A., & Mishra, R. K. (2022). Evaluation of water quality using water quality index, synthetic pollution index, and GIS technique: A case study of the river Gomti, Lucknow, India. Environmental Science and Pollution Research, 29(54), 81954–81969.

    CAS  Google Scholar 

  • Larson, T. E. (1975). Corrosion by domestic waters. Bulletin 59, State of Illinois Department of Registration and Education. Urbana, IL: Illinois State Water Survey.

    Google Scholar 

  • Lavitt, N., Acworth, R. I., & Jankowski, J. (1997). Vertical hydrogeochemical zonation in a coastal section of the Botany Sands aquifer, Sydney Australia. Hydrogeology Journal, 5, 64–74.

    Google Scholar 

  • Li, R., Zou, Z., & An, Y. (2016). Water quality assessment in Qu River based on fuzzy water pollution index method. Journal of Environmental Sciences, 50, 87–92.

    CAS  Google Scholar 

  • Li, Y., Mi, W., Ji, L., He, Q., Yang, P., Xie, S., & Bi, Y. (2023). Urbanization and agriculture intensification jointly enlarge the spatial inequality of river water quality. Science of the Total Environment, 878, 162559. https://doi.org/10.1016/j.scitotenv.2023.162559

    Article  CAS  Google Scholar 

  • Liu, Z., Fan, Y., Liu, M., Yin, Z., Li, X., Yin, L., & Zheng, W. (2023). Remote sensing and geostatistics in urban water-resource monitoring: A review. Marine and Freshwater Research, 74(10), 747–765. https://doi.org/10.1071/mf22167

    Article  Google Scholar 

  • Ma, J., Ding, Z., Wei, G., Zhao, H., & Huang, T. (2009). Sources of water pollution and evolution of water quality in the Wuwei basin of Shiyang river, Northwest China. Journal of Environmental Management, 90(2), 1168–1177.

    CAS  Google Scholar 

  • Ma, L., Liu, Y., Yang, Q., Jiang, L., & Li, G. (2022). Occurrence and distribution of pharmaceuticals and personal care products (PPCPs) in wastewater related riverbank groundwater. Science of the Total Environment, 821, 153372.

  • Marghade, D., Malpe, D. B., & Subba Rao, N. (2021). Applications of geochemical and multivariate statistical approaches for the evaluation of groundwater quality and human health risks in a semi-arid region of eastern Maharashtra, India. Environmental Geochemistry and Health, 43, 683–703.

    CAS  Google Scholar 

  • Matti, M. A., & Al-Adeeb, A. (1985). Sulphate attack on asbestos cement pipes. International Journal of Cement Composites and Lightweight Concrete, 7(3), 169–176.

    CAS  Google Scholar 

  • Meyer, T. E., & Edwards, M. (1994). Effect of alkalinity on copper corrosion. Boulder, CO: Proceeding of ASCE National Conference on Environmental Engineering.

  • Mgbenu, C. N., & Egbueri, J. C. (2019). The hydrogeochemical signatures, quality indices and health risk assessment of water resources in Umunya district, southeast Nigeria. Applied Water Science, 9(1), 22.

    Google Scholar 

  • Millette, J. R., Hammonds, A. F., Pansing, M. F., Hansen, E. C., & Clark, P. J. (1980). Aggressive water: Assessing the extent of the problem. Journal-American Water Works Association, 72(5), 262–266.

    Google Scholar 

  • Mirzabeygi, M., Naji, M., Yousefi, N., Shams, M., Biglari, H., & Mahvi, A. H. (2016). Evaluation of corrosion and scaling tendency indices in water distribution system: A case study of Torbat Heydariye, Iran. Desalination and Water Treatment, 57(54), 25918–25926.

    CAS  Google Scholar 

  • Mukate, S. V., Panaskar, D. B., Wagh, V. M., & Baker, S. J. (2019). Understanding the influence of industrial and agricultural land uses on groundwater quality in semiarid region of Solapur, India. Environment, Development and Sustainability, 22, 3207–3238.

    Google Scholar 

  • Muss, D. L. (1962). Relationship between water quality and deaths from cardiovascular disease. American Water Works Association Journal, 54, 1371–1378.

    CAS  Google Scholar 

  • Napacho, V., & Manyele, S. V. (2010). Quality assessment of drinking water in Temeke District (Part II): Characterization of chemical parameters, African. Journal of Environmental Science and Technology., 4, 775–789.

    CAS  Google Scholar 

  • Neri, L. C., Hewitt, D., Schreiber, G. B., Anderson, T. W., Mandell, J. S., & Zdrolewsky, A. (1975). Health Aspects of Hard and Soft Waters. American Water Works Association Journal, 67, 403–409.

    CAS  Google Scholar 

  • Nie, S., Mo, S., Gao, T., Yan, B., Shen, P., Kashif, M., Zhang, Z., Li, J., & Jiang, C. (2023). Coupling effects of nitrate reduction and sulfur oxidation in a subtropical marine mangrove ecosystem with Spartina alterniflora invasion. Science of the Total Environment, 862, 160930. https://doi.org/10.1016/j.scitotenv.2022.160930

    Article  CAS  Google Scholar 

  • Nong, X., Lai, C., Chen, L., Shao, D., Zhang, C., & Ji, L. (2023). Prediction modelling framework comparative analysis of dissolved oxygen concentration variations using support vector regression coupled with multiple feature engineering and optimization methods: A case study in China. Ecological Indicators, 146, 109845. https://doi.org/10.1016/j.ecolind.2022.109845

    Article  CAS  Google Scholar 

  • Omeka, M. E., Egbueri, J. C., & Unigwe, C. O. (2022). Investigating the hydrogeochemistry, corrosivity and scaling tendencies of groundwater in an agrarian area (Nigeria) using graphical, indexical and statistical modelling. Arabian Journal of Geosciences, 15(13), 1233.

    CAS  Google Scholar 

  • Patil, P. N., Sawant, D. V., & Deshmukh, R. N. (2012). Physicochemical parameters for testing of water-A review. International Journal of Environmental Sciences, 3(3), 1194–1207.

    CAS  Google Scholar 

  • Ponsadailakshmi, S., Sankari, S. G., Prasanna, S. M., & Madhurambal, G. (2018). Evaluation of water quality suitability for drinking using drinking water quality index in Nagapattinam district, Tamil Nadu in Southern India. Groundwater for Sustainable Development, 6, 43–49.

    Google Scholar 

  • Qiu, D., Zhu, G., Bhat, M. A., Wang, L., Liu, Y., Sang, L., Lin, X., Zhang, W., & Sun, N. (2023). Water use strategy of nitraria tangutorum shrubs in ecological water delivery area of the lower inland river: Based on stable isotope data. Journal of Hydrology, 624, 129918. https://doi.org/10.1016/j.jhydrol.2023.129918

    Article  CAS  Google Scholar 

  • Rajesh, J., Lakshumanan, C., Govindaraj, V., & Karthick, P. (2016). Environmental impacts assessment of brackish water aquaculture activity in Nagapattinam Region, South East Coast of India. Journal of Environmental and Analytical Toxicology, 6, 367.

    Google Scholar 

  • Raju, A., & Singh, A. (2017). Assessment of groundwater quality and mapping human health risk in central Ganga Alluvial Plain, Northern India. Environmental Processes, 4, 375–397.

    Google Scholar 

  • Ravindra, B., Subba Rao, N. & Dhanamjaya Rao, E. N. (2022). Groundwater quality monitoring for assessment of pollution levels and potability using WPI and WQI methods from a part of Guntur district, Andhra Pradesh, India. Environment, Development and Sustainability, 5, 1–31.

  • Revelle, R. (1941). Criteria for recognition of sea water in groundwaters. EOS. Transactions of the American Geophysical Union, 22(3), 593–597.

    Google Scholar 

  • Sahu, P., & Sikdar, P. K. (2008). Hydrochemical framework of the aquifer in and around East Kolkata wetlands, West Bengal, India. Environmental Geology, 55, 23–835.

    Google Scholar 

  • Sawyer, G. N., & McCartly, D. L. (1967). Chemistry of sanitary engineers (2nd ed.). McGraw-Hill.

    Google Scholar 

  • Schock, M. R. (1990). Causes of temporal variability of lead in domestic plumbing systems. Environmental Monitoring and Assessment, 15, 59.

    CAS  Google Scholar 

  • Schock, M. R. (1999). Internal corrosion and deposition control. Water Quality and Treatment, 4.

  • Shams, M., Mohamadi, A., & Sajadi, S. A. (2012). Evaluation of corrosion and scaling potential of water in rural water supply distribution networks of Tabas, Iran. World Applied Sciences Journal, 17(11), 1484–1489.

    CAS  Google Scholar 

  • Sharma, D. A., Rishi, M. S., & Keesari, T. (2017a). Evaluation of groundwater quality and suitability for irrigation and drinking purposes in southwest Punjab, India using hydrochemical approach. Applied Water Science, 7, 3137–3150.

    CAS  Google Scholar 

  • Sharma, D. A., Rishi, M. S., & Keesari, T. (2017b). Evaluation of groundwater quality and suitability for irrigation and drinking purposes in southwest Punjab, India using hydrochemical approach. Applied Water Science, 7(6), 3137–3150.

    CAS  Google Scholar 

  • Singh, S. K., Srivastava, P. K., Singh, D., Han, D., Gautam, S. K., & Pandey, A. C. (2015). Modeling groundwater quality over a humid subtropical region using numerical indices, earth observation datasets, and X-ray diffraction technique: A case study of Allahabad district, India. Environmental Geochemistry and Health, 37, 157–180.

    CAS  Google Scholar 

  • Singh, G., Batra, N., Salaria, A., Wani, O. A., & Singh, J. (2021). Groundwater quality assessment in Kapurthala district of central plain zone of Punjab using hydrochemical characteristics. Journal of Soil and Water Conservation, 20(1), 43–51.

    Google Scholar 

  • Solangi, G. S., Siyal, A. A., Babar, M. M., & Siyal, P. (2019). Evaluation of drinking water quality using the water quality index (WQI), the synthetic pollution index (SPI) and geospatial tools in Thatta district, Pakistan. Desalination and Water Treatment, 160, 202–213.

    CAS  Google Scholar 

  • Srinivasamoorthy, K., Vijayaraghavan, K., Vasanthavigar, M., Sarma, V. S., Rajivgandhi, R., Chidambaram, S., Anandhan, P., & Manivannan, R. (2010). Assessment of groundwater vulnerability in Mettur region, Tamilnadu, India using drastic and GIS techniques. Arabian Journal of Geosciences, 4, 1215–1228.

    Google Scholar 

  • Stets, E. G., Lee, C. J., Lytle, D. A., & Schock, M. R. (2017). Increasing chloride in rivers of the conterminous U.S. and linkages to potential corrosivity and lead action level exceedances in drinking water. Science of the Total Environment, 613, 1498–1509.

    Google Scholar 

  • Subba Rao, N., Dinakar, A., Karuna Kumari, B., Karunanidhi, D., & Kamalesh, T. (2021). Seasonal and spatial variation of groundwater quality vulnerable zones of Yellareddygudem watershed, Nalgonda district, Telangana State, India. Archives of Environmental Contamination and Toxicology, 80, 1–30.

    Google Scholar 

  • Subba Rao, N., Das, R., & Gugulothu, S. (2022b). Understanding the factors contributing to groundwater salinity in the coastal region of Andhra Pradesh, India. Journal of Contaminant Hydrology, 250, 104053.

    CAS  Google Scholar 

  • Subba Rao, N., Sunitha, B., Das, R. & Kumar, B. A. (2022a). Monitoring the causes of pollution using groundwater quality and chemistry before and after the monsoon. Physics and Chemistry of the Earth, Parts a/b/c, 103228.

  • Subba-Rao, N., & Chaudhary, M. (2019). Hydrogeochemical processes regulating the spatial distribution of groundwater contamination, using pollution index of groundwater (PIG) and hierarchical cluster analysis (HCA): A case study. Groundwater Sustainability, 9, 100238.

    Google Scholar 

  • Tang, Z., Hong, S., Xiao, W., & Taylor, J. (2006). Characteristics of iron corrosion scales established under blending of ground, surface, and saline waters and their impacts on iron release in the pipe distribution system. Corrosion Science, 48, 322–342.

    CAS  Google Scholar 

  • Tavanpour, N., Noshadi, M., & Tavanpour, N. (2016). Scale formation and corrosion of drinking water pipes: A case study of drinking water distribution system of Shiraz City. Modern Applied Science., 10(3), 166–177.

    CAS  Google Scholar 

  • Tiwari, T. N., & Mishra, M. A. (1985). A preliminary assignment of water quality index of major Indian rivers. Indian Journal of Environmental Protection, 5, 276–279.

    CAS  Google Scholar 

  • Tiwari, A. K., Singh, P. K., & Mahato, M. K. (2014). GIS-based evaluation of water quality index of ground water resources in West Bokaro Coalfield, India. Current World Environment, 9(3), 8.

    Google Scholar 

  • Tyagi, S., Sharma, B., Singh, P., & Dobhal, R. (2013). Water quality assessment in terms of water quality index. American Journal of Water Resources, 1(3), 34–38.

    Google Scholar 

  • Veleva, L., Castro, P., Hernandez-Duque, G., & Schorr, M. (1998). The corrosion performance of steel and reinforced concrete in a tropical humid climate. A Review. Corrosion Reviews, 16, 233–235.

    Google Scholar 

  • Wagh, V. M., Panaskar, D. B., Mukate, S. V., Aamalawar, M. L., & Sahu, U. L. (2020). Nitrate associated health risks from groundwater of Kadava River Basin, Nashik, Maharashtra, India. Human and Ecological Risk Assessment: An International Journal, 26, 654.

    CAS  Google Scholar 

  • World Health Organization WHO. (2017). Guidelines for drinking water quality (2nd ed.). World Health Organization.

    Google Scholar 

  • Wu, Z., Wang, X., Chen, Y., Cai, Y., & Deng, J. (2018). Assessing river water quality using water quality index in Lake Taihu Basin, China. Science of the Total Environment, 612, 914–922.

    CAS  Google Scholar 

  • Yin, L., Wang, L., Li, T., Lu, S., Yin, Z., Liu, X., Li, X., & Zheng, W. (2023a). U-Net-STN: A novel end-to-end lake boundary prediction model. Land, 12(8), 1602. https://doi.org/10.3390/land12081602

    Article  Google Scholar 

  • Yin, Z., Liu, Z., Liu, X., Zheng, W., & Yin, L. (2023b). Urban heat islands and their effects on thermal comfort in the US: New York and New Jersey. Ecological Indicators, 154, 110765. https://doi.org/10.1016/j.ecolind.2023.110765

    Article  Google Scholar 

  • Yuan, L., Wu, X., He, W., Degefu, D. M., Kong, Y., Yang, Y., Xu, S., & Ramsey, T. S. (2023). Utilizing the strategic concession behavior in a bargaining game for optimal allocation of water in a transboundary river basin during water bankruptcy. Environmental Impact Assessment Review, 102, 107162. https://doi.org/10.1016/j.eiar.2023.107162

    Article  Google Scholar 

  • Zhu, G., Liu, Y., Shi, P., Jia, W., Zhou, J., Liu, Y., Ma, X., Pan, H., Yu, Z., Zhang, Z., Sun, Z., Yong, L., & Zhao, K. (2022a). Stable water isotope monitoring network of different water bodies in Shiyang River basin, a typical arid river in China. Earth System Science Data, 14(8), 3773–3789. https://doi.org/10.5194/essd-14-3773-2022

    Article  Google Scholar 

  • Zhu, X., Zhao, X., Liu, Z., Liu, M., Yin, Z., Yin, L., & Zheng, W. (2022b). Impact of dam construction on precipitation: A regional perspective. Marine and Freshwater Research, 74(10), 877–890. https://doi.org/10.1071/mf22135

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization of the manuscript: G.S., J.C.E., O.A.W., and A.S. Methodology: G.S., A.S., and H.S. Investigation and data curation: G.S., O.A.W., and A.S. Writing and original draft: G.S. and J.C.E. Writing, review, and editing: G.S., O.A.W., H.S., and A.S. Supervision: G.S. and O.A.W.

Corresponding author

Correspondence to Gobinder Singh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable.

Additional information

The authors declare that they have not submitted this manuscript for publication elsewhere, and it is not currently under review or published in any other publication. However, the preprint of this manuscript was generated with https://doi.org/10.21203/rs.3.rs-2800041/v1, on Research Square.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Wani, O.A., Egbueri, J.C. et al. Seasonal variation of the quality of groundwater resources for human consumption and industrial purposes in the central plain zone of Punjab, India. Environ Monit Assess 195, 1454 (2023). https://doi.org/10.1007/s10661-023-12039-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12039-2

Keywords

Navigation