Skip to main content
Log in

Assessment of aquifer vulnerability using a geophysical approach in hyper-arid zones. A case study (In Salah region, Algeria)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Assessment of aquifer vulnerability to contamination is an effective tool for the delineation of groundwater protection zones. Geophysical approach was used to determine vulnerability zones in a study area located at 70 km north part of In Salah region, Southern limits of hydrogeological occidental basin in the outcrops Continental Intercalaire terrains. Ninety vertical electrical soundings (VES) were conducted in the study area. The results from the electrical survey data were used to assess the potential risk of groundwater pollution and define the protective properties of geologic layers as well as identifying suitable areas with poor, moderate, and high aquifer protective capacity rating. The inverted resistivity values and thickness of the layers above the groundwater table were used in order to estimate the integrated electrical conductivity (IEC) that can be also used for the quantification of aquifer vulnerability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abiola O, Enikanselu PA, Oladapo MI (2009) Groundwater potential and aquifer protective capacity of overburden units in Ado-Ekiti, southwestern Nigeria. Int J Phys Sci 4(3):120–132

    Google Scholar 

  • Adams B, Foster SSD (1992) Land-surface zoning for groundwater protection. J Inst Water Environ Manag 6(3):312–320 London, ROYAUME-UNI

    Article  Google Scholar 

  • Added A, Hamza MH (2000) Evaluation of the vulnerability to pollution in Metline aquifer. (North-East of Tunisia), Université de Tunis II; Département de Géologie Faculté des Sciences de Tunis; Campus Universitaire, 1060, Tunis, Tunisie

  • Al Hallaq AH (2002) Unpublished Ph.D. dissertation. In: Groundwater Resources Depletion in Gaza Strip: Causes and Effects. Ain Shams University, Cairo (In Arabic)

    Google Scholar 

  • Al-ahmadi ME, El-Fiky ,AA (2009) Hydrogeochemical evaluation of shallow alluvial aquifer of Wadi Marwani, western Saudi Arabia. J King Saud Univ (Sci) 21:179–190. doi:10.1016/j.jksus.2009.10.005

    Article  Google Scholar 

  • Albinet M, Margat J (1970) Groundwater pollution vulnerability mapping, 2nd series. Bull BRGM 3(4):13–22 In French

    Google Scholar 

  • Aller L, Bennet T, Lehr JH, Petty RJ, Hackett G (1987) DRASTIC: A standard system for evaluating groundwater pollution potential using hydrogeologic settings. EPA/600/2–85/018. US Environmental Protection Agency, Ada, Oklahoma 455pp

    Google Scholar 

  • Allessandrello E, Lemoine Y (1983) Determination de la permeabilité des alluvions à partir de la prospection electrique. Bull Int Assoc Eng Geol 26:357–360 (In French)

    Google Scholar 

  • Atakpo EA, Ayolabi EA (2009) Evaluation of aquifer vulnerability and the protective capacity in some oil producing communities of western Niger Delta. Environmentalist 29:310–317

    Article  Google Scholar 

  • Atekwana EA, Werkema DD, Duris JW, Rossbach S, Atekwana EA, Sauck WA, Cassidy DP (2004) In-situ apparent conductivity measurements and microbial population distribution at a hydrocarbon contaminated site. Geophysics 69:56–63

    Article  Google Scholar 

  • Baalousha H (2006) Vulnerability assessment for the Gaza Strip, Palestine using DRASTIC. Environ Geol 50:405–414

    Article  Google Scholar 

  • Berger W, Börner F, Petzold H (2001) Consecutive geoelectric measurements reveal the downward movement of an oxidation zone. Waste Manag 21:117–125

    Article  Google Scholar 

  • Berthold S, Bentley LR, Hayashi M (2004) Integrated hydrogeological and geophysical study of depression-focused groundwater recharge in the Canadian prairies. Water Resour Res 40:1029–1039

    Article  Google Scholar 

  • Boerner FD, Schopper W, Weller A (1996) Evaluation of Transport and storage properties in the soil and groundwater zone from induced polarization measurements. Geophys Prospect 44:583–601

    Article  Google Scholar 

  • Boughriba M, Melloul A, Zarhloule Y, Ouardi A (2006) Extension spatiale de la salinisation des ressources en eau et modèle conceptuel des sources salées dans la plaine des Triffa (Maroc nord-oriental). C R Geoscience 338:768–774. doi:10.1016/j.crte.2006.07.007

    Article  Google Scholar 

  • Braga ACO, Filho WM, Dourado JC (2006) Resistivity (DC) method applied to aquifer protection studies. Revista Brasileira de Geofísica 24(4):573–581

    Article  Google Scholar 

  • BRL ingénierie (1998) Etude du Plan directeur général de développement des régions sahariennes – Connaissances d'Ensemble. Rapport, ANRH, Alger, Algérie.

  • Busson G (1967) Carte géologique du bassin Mésozoique du Sahara Algéro-Tunisien et de ses abords, planche 2. CNRS, Paris

    Google Scholar 

  • Casas A, Himi M, Diaz Y, Pinto V, Font X, Tapias JC (2008) Assessing aquifer vulnerability to pollutants by electrical resistivity tomography (ERT) at a nitrate vulnerable zone in NE Spain. Environ Geol 54:515–520.

  • Celico F (1996) Vulnerabilita all’Inquinamento degli Acquiferi e delle Risorse Idriche Sotterranee in Realta Idrogeologiche Complesse: i Metodi DAC e VIR. Quaderni di Geologia Applicata 1:93–116

    Google Scholar 

  • Christensen NB, Sorensen KI (1998) Surface and borehole electric and electromagnetic methods for hydrogeophysical investigations. Eur J Environ Eng Geophys 3(1):75–90

    Google Scholar 

  • Christensen P-F, Christensen S, Friborg R, Kirsch R, Rabbel W, Röttger B, Scheer W, Thomsen S, Voss W (2002) A geological model of the Danish-German Border Region. Meyniana 54:73–88

    Google Scholar 

  • Cichocki G, Zojer HT (2007) International conference, Groundwater vulnerability assessment and mapping. IAH selected papers; 11:191–198. In: VURAAS – vulnerability and risk assessment for Alpine aquifer systems. Taylor & Francis Group, London, UK

    Google Scholar 

  • Civita M (1994) La carte della vulnerability degli acquiferi all’inquinamento. Teoria and Practica. Pitagora, Bologna, p. 325

    Google Scholar 

  • Civita M, De Regibus C (1995) Sperimentazione di alcune metodologie per la valutazione della vulnerabilità degli aquiferi [Development of a methodology for the assessment of aquifer vulnerabilità]. Q Geol Appl Pitagora 3:63–71

    Google Scholar 

  • Cornet A (1964) Introduction à l’hydrogéologie saharienne. Rev Géogr Phys Géol Dyn 6:5–72

    Google Scholar 

  • Corwin DL, Vaughan PL, Loague K (1997) Modeling nonpoint source pollutants in the vadose zone with GIS. Environ Sci Technol 31:2157–2175

    Article  Google Scholar 

  • Daily WD, Ramirez AL, LaBrecque DJ, Nitao J (1992) Electrical resistivity tomography of vadose water movement. Water Ressources Research 28:1429–1442

    Article  Google Scholar 

  • Daly D, Drew D (1999) Irish methodologies for karst aquifer protection. In: Beek B (ed) Hydrogeology and engineering geology of sinkholes and karst. Balkema, Rotterdam, pp. 267–327

    Google Scholar 

  • Doerfliger N, Jeannin PY, Zwahlen F (1999) Water vulnerability assessment in karst environments: A new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ Geol 39(2):165–176

    Article  Google Scholar 

  • Douma J, Helbig K, Schocking F, Tempels J (1990) Shear-wave splitting in shallow clays observed in a multi-offset and walk-around VSP. Geol Mijnb 69:417–428

    Google Scholar 

  • Drew D, Hötzl H (1999) The management of karst environments. Chapter 8. In: Drew, D and Hötzl (Eds.). Karst Hydrogeology and Human Activities Impacts, consequences and implications, A.A. Balkema, Rotterdam, pp 259–273

  • Edmunds WM, Gaye CB (1997) High nitrate baseline concentrations in groundwaters from the Sahel. J Environ Qual 26:1231–1239

    Article  Google Scholar 

  • Edmunds WM, Guendouz A, Mamou A, Moulla AS, Shand P, Zouari K (2003) Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Appl Geochem 18:805–822

    Article  Google Scholar 

  • ERESS (1972) Etude des Ressources en Eau de Sahara Septentrional [Study of water resources of the Septentrional Sahara]. UNESCO, Paris. (7 Vols. and Annexes).

  • Focazio MJ, Reilly TE, Rupert MG, Helsel DR (2002) Assessing ground-water vulnerability to contamination: Providing scientifically defensible information for decision makers US Department of Interior and US Geological Survey, Reston, VA US Geological Survey Circular No:1224

  • Foster SSD (1987) Fundamental concepts in aquifer vulnerability pollution risk and protection strategy. In: van Duijvenboodennd W, van Waegeningh HG (eds) Vulnerability of soil and groundwater to pollution: Proceedings and information. TNO Committee on Hydrological Research, The Hague, pp. 69–86

    Google Scholar 

  • Foster SSD, Hirata R (1988) Groundwater pollution risk assessment: A methodology using available data. WHO-PAHO/HPE-CEPIS Technical Manual, Lima, p. 81

  • Foster S, Hirata R, Gomes D, D’Elía M, Paris M (2002) Groundwater Quality Protection A guide for water utilities, municipal authorities and environment agencies. The World Bank, p. 103

  • Goldscheider N, Klute M, Sturm S, Hötzl H (2000) The PI method: a GIS based approach to mapping groundwater vulnerability with special consideration of karst aquifers. Z Angew Geol 463:157–166

    Google Scholar 

  • Griffith DH (1976) Application of electrical resistivity measurements for the determination of porosity and permeability in sandstones. Geoexploration 14(3/4):207–213

    Article  Google Scholar 

  • Griffith DH, King (1965) Applied Geophysics for Engineers and Geologists. Paragon Press, London, p. 223

    Google Scholar 

  • Grissemann C, Rammlmair D, Siegwart C, Foullet N (2000) In: Rammlmair, al. e (eds) Spectral induced polarization linked to image analyses: a new approach. Applied mineralogy, Balkena, Rotterdam, pp. 561–564

    Google Scholar 

  • Gruhne M (1999) Überwachung von Untergrundkontaminationen mit Messungen der komplexen elektrischen Leitfähigkeit. Proceedings des DGFZ 16, Dresden

    Google Scholar 

  • Guendouz A (1985) Contribution à l’étude hydrochimique et isotopique des nappes profondes du Sahara Nord-est Septentrional, Algérie. Thèse Doct. 3ème cycle, Univ. Paris XI, p. 243

  • Haertle T (1983) Groundwater in water resources planning. In: Method of working and employment of EDP during the preparation of groundwater vulnerability maps. UNESCO. INTER. SYMP, Proc, Koblenz, Germany UNESCO/IAH/IAHS. II:1073–1085

    Google Scholar 

  • Henriet JP (1975) Direct applications of the Dar Zarrouk parameters in ground water surveys. Geophys Prospect 24:344–353

    Article  Google Scholar 

  • Herbst M, Hardelauf H, Harms R, Vanderborght J, Vereecken H (2005) Pesticide fate at regional scale: development of an integrated model approach and application. –Physics and. Chem Earth 30(8–10):542–549

    Article  Google Scholar 

  • Hölting B, Härtlé T, Hohberger K-H, Nachtigall KH, Villinger E, Weinzierl W, Wrobel J-P (1995) Konzept zur Ermittlung der Schutzfunktion der Grundwasserüberdeckung [Conception for the evaluation of the protective function of the unsaturated stratum above the groundwater table]. Geol Jahrb C63:5–24

    Google Scholar 

  • IPI2Win (2001) software Moscow State University, Version 2.1.

  • Kabera T, Zhaohui L (2008) A GIS DRASTIC model for assessing groundwater in shallow aquifer in Yunchenge Basin, Shanix, China. J Appl Sci 3(3):195–205

    Google Scholar 

  • Kalinski RJ, Kelly WE, Bogardi I (1993a) Combined use of geoelectric sounding and profiling to quantify aquifer protection properties. Ground Water 31(4):538–544

    Article  Google Scholar 

  • Kalinski RJ, Kelly WE, Bogardi I, Pesti G (1993b) Electrical resistivity measurements to estimate travel time through unsaturated groundwater protective layers. J Appl Geophys 30:161–173

    Article  Google Scholar 

  • Keller GV, Frischknecht FC (1966) Electrical Method in Geophysical Prospecting. Pergamon Press, Oxford, p. 517

    Google Scholar 

  • Kelly WE (1977) Geoelectric sounding for estimation aquifer hydraulic conductivity. Groundwater 15(6):420–425

    Article  Google Scholar 

  • Kemna A (2000) Tomographic inversion of complex resistivity. PhD-Thesis. Berichte des Inst. Geophysik der Ruhr-Universität Bochum, Reihe A, p 56

  • Ketelaere D, Cremona M, Cremonini M, Pedone R, Bernat M, Page A, Fernex F, Added A, Mammou AB, Marzoughi Y (1997) A computerized methodology for aquifer vulnerability mapping: Mean Sea Level aquifer, Malta and Manouba aquifer, Tunisia. Karst Hydrology, IAHS Publ 247:81–94

    Google Scholar 

  • Kilian C (1932) Sur des conglomérats précambriens du Sahara Central: le Pharusien et le Suggarien. - C.R. Somm. Soc. géol, Fr. Paris 7:87–88

    Google Scholar 

  • Kirsch R (2006) Groundwater Geophysics-A Tool for Hydrogeology. Springer, Berlin Heidelberg, pp. 459–471

    Book  Google Scholar 

  • Kirsch R (2009) Groundwater Geophysics-A Tool for Hydrogeology, 2nd edn. Springer, Berlin Heidelberg, pp. 518–521

    Book  Google Scholar 

  • Kirsch R, Sengpiel K-P, Voss W (2003) The use of electrical conductivity mapping in the definition of an aquifer vulnerability index. Near Surface Geophysics 1:3–20

    Article  Google Scholar 

  • Kirsch R, Rumpel H-M, Scheer W, Wiederhold H (2006) Groundwater Resources in Buried Valleys-A Challenge for Geosciences. Leibniz Institute for Applied Geosciences (GGA-Institut) Stilleweg 2, 30655 Hannover-Germany, pp. 77–88

    Google Scholar 

  • Komatina SM (1994) Geophysical methods application in groundwater natural protection against pollution. Environ Geol 23:53–59

    Article  Google Scholar 

  • Lenkey L, Hamori Z, Mihalffy P (2005) Investigating the hydrogeology of a water-supply area using direct-current electrical sounding. Geophy 70(4):H1–H19

    Article  Google Scholar 

  • Liggett JE, Talwar S (2009) Groundwater vulnerability assessments and integrated water resource management. Watershed Management Bulletin 13(1):18–29

    Google Scholar 

  • Liu S, Yeh T-CJ (2004) An integrative Approach for monitoring water Movement in the vadose zone. Vadose Zone J 3:681–692

    Article  Google Scholar 

  • Lobo-Ferreira JP (1999) The European Union experience on groundwater vulnerability assessment and mapping. COASTIN A Coast Policy Res Newsl 1:8–10

    Google Scholar 

  • Mamou A (1990) Caractéristiques, évaluation et gestion des ressources en eaux du Sud tunisien. Thèse de Doctorat d’Etat. Sc. Nat. Univ. Paris-Sud, p. 542

  • Massoud U, Santos F, Khalil MA, Taha A, Abbas AM (2010) Estimation of aquifer hydraulic parameters from surface geophysical measurements: a case study of the Upper Cretaceous aquifer, central Sinai. Egypt Hydrogeol J 18:699–710

    Article  Google Scholar 

  • Mazac O, Cislerova M, Kelly WE, Landa I, Venhodova D (1990) Determination of hydraulic conductivities by surface geoelectrical methods. In: Ward SH (ed) Geotechnical and environmental geophysics 2: environmental and groundwater. Soc Explor Geophys, pp 125–131

  • McLay CDA, Dragten R, Sparling G, Selvarajah N (2001) Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environ Pollut 115:191–204

    Article  Google Scholar 

  • Mhamdi A, Gouasmia M, Gasmi M, Bouri S, Ben Dhia H (2006) Évaluation de la qualité de l’eau par application de la méthode géoélectrique: exemple de la plaine d’El Mida–Gabes nord (Sud tunisien). C. R. Geosci 338:1228–1239. doi:10.1016/j.crte.2006.09.005

    Article  Google Scholar 

  • Migdad ESM (2011) Groundwater Vulnerability Assessment Using GIS-Based DRASTIC Model: ID #201004500. CRP 514: Introduction to GIS, King Fahd University of Petroleum and Minerals, p 23

  • Nowlan L (2005) Buried treasure: Groundwater permitting and pricing in Canada. Walter and Duncan Gordon Foundation, with case studies by Geological Survey of Canada, West Coast Environmental Law, and Sierra Legal Defence Fund. p 118

  • Omosuyi GO (2010) Geoelectric assessment of groundwater prospect and vulnerability of overburden aquifers at Idanre, southwestern Nigeria. Ozean J Appl Sci 3(1):19–28

    Google Scholar 

  • OSS (Observatoire du Sahara et du Sahel) (2003): Système Aquifère du Sahara Septentrional. Volume 1: Modèle Mathématique. Projet SASS; Rapport interne. Annexes. p 229

  • Palmer RC, Lewis MA (1998) Assessment of groundwater vulnerability in England and Wales. In: Robins, N.S. (Ed.), Groundwater Pollution, Aquifer Recharge and Vulnerability. Geol Soc Spec 130:191–198

    Article  Google Scholar 

  • Parkhomenko EI (1967) Electrical properties of rocks. In: Keller GV (ed) Plenum Press, New York, p 314 (translated from Russian)

  • Popescu IC, Gardin N, Brouyére S, Dassargues A (2008) In ModelCARE 2007 Proceedings, Calibration and Reliability in Groundwater Modelling. In: Refsgaard JC, Kovar K, Haarder E, Nygaard E (eds) Groundwater vulnerability assessment using physically-based modelling: From challenges to pragmatic solutions. IAHS, Denmark Publication No. 320

    Google Scholar 

  • RIVM (1987) Kwetsbaarheid van het Grondwater. Rijksinsituut voor Volksgezondheid en Milieu hygiene, Staatsuitgeverij, ‘s-Gravehage.

  • Robert J, Kalinski RJ, William E, Kelly WE, Bogardi I (1993) Combined use of geoelectric sounding and profiling to quantity aquifer protection properties. Ground Water 4(31):538–544

    Google Scholar 

  • Robins NS, Chilton PJ, Cobbing JE (2007) Adapting existing experience with aquifer vulnerability and groundwater protection for Africa. J Afr Earth Sci 47:30–38

    Article  Google Scholar 

  • Rottger B, Kirsch R, Scheer W, Thomsen S, Friborg R, Voss W (2005) Multifrequency airborne EM surveys - a tool for aquifer vulnerability mapping. In: Butler DK (ed) Near Surface Geophysics, Investigations in Geophysics, no, vol 13. Society of Exploration Geophysicists, Tulsa, pp. 643–651

    Chapter  Google Scholar 

  • Sankaran S, Rangarajan R, Krishnakumar K, Saheb Rao S, Smitha V (2010) Geophysical and tracer studies to detect subsurface chromium contamination and suitable site for waste disposal in Ranipet, Vellore district, Tamil Nadu, India. Environ Earth Sci 60:757–764. doi:10.1007/s12665-009-0213-3

    Article  Google Scholar 

  • Scheffer F, Schachtschabel P (1984) Lehrbuch der Bodenkunde. Enke Verlag, Stuttgart

    Google Scholar 

  • Sen PN, Goode PA, Sibbit A (1988) Electrical conduction in clay bearing sandstones at low and high salinities. J Appl Phys 63:4832–4840

    Article  Google Scholar 

  • Sharma PV (1997) Environmental and engineering geophysics. Cambridge University Press, Cambridge, p. 475

    Book  Google Scholar 

  • Sharma VVJ, Rao B (1962) Variation of electrical resistivity of river sands, Calcite and Quartz powders with water content. Geophysics 17(4):470–479

    Article  Google Scholar 

  • Sinha R, Israil M, Singhal DC (2009) A hydrogeophysical model of the relationship between geoelectric and hydraulic parameters of anisotropic aquifers. Hydrogeol J 17:495–503

    Article  Google Scholar 

  • Sorensen Kurt I, Auken E, Christensen N, Pellerin L (2005) An integrated approach for hydrogeophysical investigations: new technologies and a case history. In: Bulter DK (ed) Bulter. Near-surface Geophysics. Society of Exploration Geophysicists, Tulsa, pp. 585–597

  • Soupios PM, Kouli M, Vallianatos F, Vafidis A, Stavroulakis G (2007) Estimation of aquifer hydraulic parameters from surficial geophysical methods: a case study of Keritis basin in Chania (Crete-Greece). J Hydrol 338:122–131

    Article  Google Scholar 

  • Sundararajan N, Sankaran S, Al-Hosni TK (2012) Vertical electrical sounding (VES) and multi- electrode resistivity in environmental impact assessment studies over some selected lakes: a case study. Environ Earth Sci 65:881–895. doi:10.1007/s12665-011-1132-7

    Article  Google Scholar 

  • Thomas H, Leah GW (2001) Assessing Vulnerability of Groundwater. California Department of Health Services, Davis, p 13

  • Tizro TA, Voudouris KS, Salehzade M, Mashayekhi H (2010) Hydrogeological framework and estimation of aquifer hydraulic parameters using geoelectrical data: a case study from West Iran. Hydrogeol J 18:917–929

    Article  Google Scholar 

  • UNESCO (1972) Etude des ressources en eau du Sahara Septentrional, Rapport sur les résultats du Projet REG-100. Paris p 116

  • Van Stempvoort D, Ewert L, Wassenaar L (1992) Aquifer vulnerability index: a GIS compatible method for groundwater vulnerability mapping. Canadian Water Resources Journal 18:25–37

    Article  Google Scholar 

  • Vias JM, Andreo B, Perles MJ, Carrasco F (2005) A comparative study of four schemes for groundwater vulnerability mapping in a diffuse flow carbonate aquifer under Mediterranean climatic condition. Environ Geol 47(4):586–595

    Article  Google Scholar 

  • Vias JM, Andreo B, Perles MJ, Carrasco F, Vadillo I, Jiménez P (2006) Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Application in two pilot sites in Southern Spain. Hydrogeol J 14:912–925

    Article  Google Scholar 

  • Weihnacht B, Boerner F (2005) Ermittlung geohydraulischer Parameter aus kombinierten geophysikalischen Messungen im Technikumsmaßstab. Proc. 65. JT der DGG, Graz, p. 39

    Google Scholar 

  • Wilson LG (1983) Monitoring in the vadose zone: Part 3. Groundw Monit Rev 3(1):155–166

    Article  Google Scholar 

  • Worthington PF (1975) Quantitative geophysical investigations of granular aquifers. Geophys Survey 3:313–366

    Article  Google Scholar 

  • Younger PL (2007) Groundwater in the Environment: An Introduction. Blackwell publishing, Oxford OX4 2DQ, Uk. Chapter 9

  • Zhou J, Li G, Liu F, Wang Y, Guo X (2010) DRAV model and its application in assessing groundwater vulnerability in arid area: a case study of pore phreatic water in Tarim Basin, Xinjiang, Nortwest China. Environ Earth Sci 60:1055–1063

    Article  Google Scholar 

  • Zohdy AAR (1989) A new method for automatic interpretation of Schlumberger and Wenner sounding curves. Geophysics 5(2):245–252

    Article  Google Scholar 

  • Zohdy AAR, Eaton GP, Mabey DR (1974) Application of surface Geophysics to groundwater investigations. US Geol Surv Techn Water-Res Investig, Book 2:116 (Chapter D1)

    Google Scholar 

  • Zwahlen F (2003) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers, final report (COSTaction 620). European Commission, Brussels, p. 297

    Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to National Hydraulic Resources Agency (ANRH) and Engineering Office BEREGH for their helpful technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Madi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madi, M., Meddi, M., Boutoutaou, D. et al. Assessment of aquifer vulnerability using a geophysical approach in hyper-arid zones. A case study (In Salah region, Algeria). Arab J Geosci 9, 460 (2016). https://doi.org/10.1007/s12517-016-2489-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2489-4

Keywords

Navigation