Skip to main content

Advertisement

Log in

Biosolids application affects the competitive sorption and lability of cadmium, copper, nickel, lead, and zinc in fluvial and calcareous soils

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

A Correction to this article was published on 04 January 2018

This article has been updated

Abstract

The objective of this research was to investigate the effects of biosolids on the competitive sorption and lability of the sorbed Cd, Cu, Ni, Pb, and Zn in fluvial and calcareous soils. Competitive sorption isotherms were developed, and the lability of these metals was estimated by DTPA extraction following their sorption. Sorption of all metals was higher in the fluvial than in the calcareous soil. Sorption of Cu and Pb was stronger than that of Cd, Ni, and Zn in all soils. Biosolids application (2.5%) reduced the sorption of all metals especially Cu and Pb (28–43%) in both soils (especially the calcareous soil) at the lower added metal concentrations (50 and 100 mg L−1). However, it increased the sorption of all metals especially Pb and Cu in both soils (especially the calcareous soil; 15.5-fold for Cu) at the higher added concentrations (250 and 300 mg L−1). Nickel showed the highest lability followed by Cd, Zn, and Pb in both soils. Biosolids increased the lability of the sorbed Ni in the fluvial soils at all added concentrations and the lability of Cd, Pb, and Zn at 50 mg L−1, but decreased the lability of Cd, Pb, and Zn at 250 and 300 mg L−1 in both soils. We conclude that at low loading rate (e.g., 50 mg L−1) biosolids treatment might increase the lability and environmental risk of Cd, Cu, Pb, and Zn. However, at high loading rate (e.g., 300 mg L−1) biosolids may be used as an immobilizing agent for Cd, Cu, Pb, Zn and mobilizing agent for Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 04 January 2018

    Unfortunately, in the original publication of the article, Prof. Yong Sik Ok’s affiliation was incorrectly published.

References

  • Al Mamun, S., Chanson, G., Muliadi, Benyas, E., Aktar, M., Lehto, N., et al. (2016). Municipal composts reduce the transfer of Cd from soil to vegetables. Environmental Pollution, 213, 8–15.

    Article  CAS  Google Scholar 

  • Alcacio, T. E., Hesterberg, D., Chou, J. W., Martin, J. D., Beauchemin, S., & Sayers, D. E. (2011). Molecular scale characteristics of Cu(II) bonding in goethite–humate complexes. Geochimica et Cosmochimica Acta, 65(9), 1355–1366.

    Article  Google Scholar 

  • Antoniadis, V., & Alloway, B. J. (2002). The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils. Environmental Pollution, 117, 515–521.

    Article  CAS  Google Scholar 

  • Antoniadis, V., Golia, E. E., Shaheen, S. M., & Rinklebe, J. (2017a). Bioavailability and health risk assessment of potentially toxic elements in Thriassio Plain, near Athens, Greece. Environmental Geochemistry and Health. doi:10.1007/s10653-016-9882-5.

    Google Scholar 

  • Antoniadis, V., Shaheen, S. M., Boersch, J., Frohne, T., Du Laing, G., & Rinklebe, J. (2017b). Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. Journal of Environmental Management, 186, 192–200.

    Article  CAS  Google Scholar 

  • Antoniadis, V., & Tsadilas, C. D. (2007). Sorption of cadmium, nickel, and zinc in mono- and multimetal systems. Applied Geochemistry, 22, 2375–2380.

    Article  CAS  Google Scholar 

  • Appel, C., & Ma, L. Q. (2002). Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils. Journal of Environmental Quality, 31, 581–589.

    Article  CAS  Google Scholar 

  • Appel, C., Ma, L. Q., Rhue, R. D., & Reve, W. (2008). Sequential sorption of lead and cadmium in three tropical soils. Environmental Pollution, 155, 132–140.

    Article  CAS  Google Scholar 

  • Arias, M., Perez-Novo, C., Osorio, F., Lopez, E., & Soto, B. (2005). Sorption and desorption of copper and zinc in the surface layer on acid soils. Journal of Colloid and Interface Science, 28, 21–29.

    Article  Google Scholar 

  • Barajas-Aceves, M. (2016). Organic waste as fertilizer in semi-arid soils and restoration in mine sites. In: Larramendy, & Soloneski (Eds.), Agricultural and biological sciences “organic fertilizers—From basic concepts to applied outcomes”. Published: Under CC BY 3.0 license. ISBN 978-953-51-2450-4. doi:10.5772/62665.

  • Bhatti, S. S., Sambyal, V., & Nagpal, A. K. (2016). Heavy metals bioaccumulation in berseem (Trifolium alexandrinum) cultivated in areas under intensive agriculture, Punjab, India. SpringerPlus, 5, 173.

    Article  Google Scholar 

  • Council of the European Communities. (1986). The protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Council Directive of 12 June 1986 (86/278/EEC). Official Journal of the European Communities No. L 181/6.

  • Cutillas-Barreiro, L., Perez-Rondriguez, P., Gomez-Armesto, A., Fernandez-Sanjurjo, M. J., Alvarez-Rondriguez, E., Nunez-Delgado, A., et al. (2016). Lithological and land-use based assessment of heavy metal pollution in soils surrounding a cement plant in SW Europe. Science of the Total Environment, 562, 179–190.

    Article  CAS  Google Scholar 

  • Diagboya, P. N., Olu-Owolabi, B. I., & Adebowale, K. O. (2015). Effect of time, soil organic matter, and iron oxides on the relative retention and redistribution of lead, cadmium, and copper on soils. Environmental Science and Pollution Research, 22, 10331–10339.

    Article  CAS  Google Scholar 

  • Fan, T. T., Wang, Y. J., Li, C. B., Zhou, D.-M., & Friedman, S. P. (2015). Effects of soil organic matter on sorption of metal ions on soil clay particles. Soil Science Society of America Journal, 79, 794–802.

    Article  CAS  Google Scholar 

  • Fang, W., Yonghong, W., & Liu, J. (2016). Comparative characterization of sewage sludge compost and soil: Heavy metal leaching characteristics. Journal of Hazardous Materials, 310, 1–10.

    Article  CAS  Google Scholar 

  • Fernandez, M. A., Soulages, O. E., Acebal, S. G., Rueda, E. H., & Sanchez, R. M. T. (2015). Sorption of Zn(II) and Cu(II) by four Argentinean soils as affected by pH, oxides, organic matter and clay content. Environmental Earth Science, 74, 4201–4214.

    Article  CAS  Google Scholar 

  • Galuszka, A., Migaszewski, Z., Duczmal-Czernikiewicz, A., & Dolegowska, S. (2016). Geochemical background of potentially toxic trace elements in reclaimed soils of the abandoned pyrite-uranium mine (south-central Poland). International Journal of Environmental Science and Technology, 13, 2649–2662.

    Article  CAS  Google Scholar 

  • Hamidpour, M., Khadivi, E., & Afyuni, M. (2016). Residual effects of biosolids and farm manure on speciation and plant uptake of heavy metals in a calcareous soil. Environmental Earth Science, 75, 1037.

    Article  Google Scholar 

  • Holm, P. E., Rootzn, H., Borggaard, O. K., Moberg, J. P., & Christensen, T. H. (2003). Correlation of cadmium distribution coefficients to soil characteristics. Journal of Environmental Quality, 32, 138–145.

    Article  CAS  Google Scholar 

  • Hough, L. R. (2010). Copper and lead. In P. S. Hooda (Ed.), Trace elements in soils (1st ed., pp. 441–460). Chichester: Wiley.

    Chapter  Google Scholar 

  • Huang, B., Li, Z., Huang, J., Guo, L., Nie, X., Wang, Y., et al. (2014). Adsorption characteristics of Cu and Zn onto various fractions of aggregates from red paddy soil. Journal of Hazardous Materials, 264, 176–183.

    Article  CAS  Google Scholar 

  • Kargar, M., Clark, O. G., Hendershot, W. H., Jutras, P., & Prasher, S. O. (2015). Immobilization of trace metals in contaminated urban soil amended with compost and biochar. Water, Air, and Soil pollution, 226, 191.

    Article  Google Scholar 

  • Knox, A. S., Paller, M. H., Nelson, E. A., Specht, W. L., Halverson, N. V., & Gladden, J. B. (2006). Metal distribution and stability in constructed wetland sediment. Journal of Environmental Quality, 35, 1948–1959.

    Article  CAS  Google Scholar 

  • Komarek, M., Koretsky, C. M., Stephen, K. J., Alessi, D. S., & Chrastny, V. (2015). Competitive adsorption of Cd(II), Cr(VI), and Pb(II) onto nanomaghemite: A spectroscopic and modelling approach. Environmental Science and Technology, 49, 12851–12859.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 4, 421–428.

    Article  Google Scholar 

  • Lottermoser, B. G. (2012). Effect of long-term irrigation with sewage effluent on the metal content of soils, Berlin, Germany. Environmental Geochemistry and Health, 34, 67–76.

    Article  CAS  Google Scholar 

  • Lu, Q., He, Z., & Stoffella, P. J. (2012). Land application of biosolids in the USA: A review. Applied and Environmental Soil Science. doi:10.1155/2012/201462.

    Google Scholar 

  • McBride, M. B. (1994). Environmental Chemistry of Soils. New York: Oxford Univ. Press.

    Google Scholar 

  • Merrikhpour, H., & Jalali, M. (2013). Sorption processes of natural Iranian bentonite exchanged with Cd2+, Cu2+, Ni2+, and Pb2+ cations. Chemical Engineering Communications, 200, 1645–1665.

    Article  CAS  Google Scholar 

  • Moller, R. M. (2007). A brief on biosolids options for biosolids management. California: California Research Bureau, California Agencies. Paper 308. ISBN 1-58703-224-4. http://digitalcommons.law.ggu.edu/caldocs_agencies/308.

  • Ng, C. C., Boyce, A. N., Rahman, M. M., & Abas, M. R. (2016). Effects of different soil amendments on mixed heavy metals contamination in vetiver grass. Bulletin of Environmental Contamination and Toxicology, 97, 695–701.

    Article  CAS  Google Scholar 

  • Paramashivam, D., Clough, T. J., Carlton, A., Gough, C., Dickinson, N. M., Horswell, J., et al. (2016). The effect of lignite on nitrogen mobility in a low-fertility soil amended with biosolids and urea. Science of the Total Environment, 543(A), 601–608.

    Article  CAS  Google Scholar 

  • Park, J.-H., Ok, Y. S., Kim, S.-H., Cho, J.-S., Heo, J.-S., Delaune, R. D., et al. (2016). Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere, 142, 77–83.

    Article  CAS  Google Scholar 

  • Rinklebe, J., Kumpiene, J., Du Laing, G., & Ok, Y. S. (2017). Biogeochemistry of trace elements in the environment—Editorial to the special issue. Journal of Environmental Management, 186, 127–130.

    Article  Google Scholar 

  • Saha, U. K., Taniguuchi, S., & Sakurai, K. (2002). Simultaneous sorption of cadmium, zinc, and lead on hydroxyaluminum- and hydroxyaluminosilicate–montmorillonite complexes. Soil Science Society of America Journal, 66, 117–128.

    Article  CAS  Google Scholar 

  • Sahraoui, H., Andrade, M. L., Covelo, E. F., Hachicha, M., Tarhouni, J., Oliveira, L. F. S., et al. (2015). Sorption and desorption of Pb2+ and Cu2+ in different Tunisian soils. Fresenius Environmental Bulletin, 24, 1909–1919.

    CAS  Google Scholar 

  • Saleem, M., Iqbal, J., & Shah, M. H. (2014). Non-carcinogenic and carcinogenic health risk assessment of selected metals in soil around a natural water reservoir, Pakistan. Ecotoxicology and Environmental Safety, 108, 42–51.

    Article  CAS  Google Scholar 

  • Sastre, J., Rauret, G., & Vedal, M. (2006). Effect of the cationic composition of sorption solution on the quantification of sorption–desorption parameters of heavy metals in soils. Environmental Pollution, 140, 322–339.

    Article  CAS  Google Scholar 

  • Selim, H. M. (2016). Bioavailability of micronutrients and other trace elements in soils. AgCenter Research Bulletin, Bulletin Number 894 (pp. 1–24). Baton Rouge: Louisiana State University.

  • Shaheen, S. M. (2009). Sorption and lability of cadmium and lead in different soils from Egypt and Greece. Geoderma, 153, 61–68.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Shams, M. S., Ibrahim, S. M., Elbehiry, F., Antoniadis, V., & Hooda, P. (2014). Stabilization of biosolids by using various by-products: Impact on soil properties, biomass production, and bioavailability of copper and zinc. Water, Air, and Soil Pollution, 225, 2014.

    Article  Google Scholar 

  • Shaheen, S. M., & Tsadilas, C. D. (2013). Utilization of biosolids in production of bioenergy crops. I: Impact on canola biomass, soil properties and nutrient availability. Communication in Soil Science and Plant Analyses, 44(14), 243–258.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Tsadilas, C. D., Mitsibonas, T., & Tzouvalekas, M. (2009). Distribution coefficient of copper in different soils from Egypt and Greece. Communication in Soil Science and Plant Analyses, 40, 121–133.

    Article  Google Scholar 

  • Shaheen, S. M., Tsadilas, C. D., & Rinklebe, J. (2013). A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties. Advances in Colloids and Interface Science, 201–202, 43–56.

    Article  Google Scholar 

  • Shaheen, S. M., Tsadilas, C. D., Rupp, H., Rinklebe, J., & Meissner, R. (2015). Distribution coefficients of cadmium and zinc in different soil types in a mono-metal and competitive sorption system. Journal of Plant Nutrition & Soil Sciences, 178, 671–681.

    Article  CAS  Google Scholar 

  • Soil Survey Staff. (2010). Key of soil taxonomy: A basic system of soil classification for making and interpreting soil surveys (2nd ed.). Agric. Handb. No. 436, USDA-NRCS, Gov. Print. Office, Washington D.C.

  • Sparks, D. L., Page, A. L., Helmke, P. A., Loppert, R. H., Soltanpour, P. N., Tabatabai, M. A., et al. (1996). Methods of soil analysis: Chemical methods, part 3. Madison: Agronomy Society of America and Soil Science Society of America.

    Google Scholar 

  • Sposito, G. (1989). The Chemistry of Soils. New York: Oxford Univerity Press.

    Google Scholar 

  • Sukreeyapongse, O., Holm, P. E., Strobel, B. W., Panichsakpatana, S., Magid, J., & Hansen, H. C. B. (2002). pH-dependent release of cadmium, copper, and lead from natural and sludge-amended soils. Journal of Environmental Quality, 31, 1901–1909.

    Article  CAS  Google Scholar 

  • Topalidis, V., Harris, A., Hardaway, C. J., Benipal, G., & Douvris, C. (2017). Investigation of selected metals in soil samples exposed to agricultural and automobile activities in Macedonia, Greece, using inductively coupled plasma-optical emission spectrometry. Microchemical Journal, 130, 213–220.

    Article  CAS  Google Scholar 

  • Tsadilas, C. D., & Shaheen, S. M. (2013). Utilization of biosolids in production of bioenergy crops. II: Impact of application rate on bioavailability and uptake of heavy metals by canola. Communications in Soil Science and Plant Analysis, 44, 259–274.

    Article  CAS  Google Scholar 

  • Tsadilas, C. D., Shaheen, S. M., Gizas, D., Samaras, V., & Hu, Z. (2009). Influence of fly ash application on copper and zinc sorption by acidic soil amended with biosolids. Communication in Soil Science and Plant Analyses, 40, 168–179.

    Google Scholar 

  • United States Environmental Protection Agency. (1995). Test methods for evaluating solid wastes. Washington: USEPA SW 846, U.S. Gov. Print Office.

  • U.S. Environmental Protection Agency. (2002). Using biosolids for reclamation and remediation of disturbed soils. Prepared by the Center for Urban Horticulture, University of Washington. For: Plant Conservation Alliance Bureau of Land Management, US Department of Interior, USEPA (pp. 1–30).

  • Vithanage, M., Upamali, A., Dou, R. X., Bolan, N. S., Yang, J. E., & Ok, Y. S. (2013). Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils. Journal of Colloid and Interface Science, 406, 217–224.

    Article  CAS  Google Scholar 

  • Walter, I., Martínez, F., & Cuevas, G. (2006). Biosolid amendment of a calcareous, degraded soil in a semi-arid environment. Spanish Journal of Agricultural Research, 4(1), 47–54.

    Article  Google Scholar 

  • Yu, H., Ding, W., Luo, J., Geng, R., & Cai, Z. (2012). Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil. Soil and Tillage Research, 124, 170–177.

    Article  Google Scholar 

  • Yu, X., & Lu, S. (2016). Multiscale correlations of iron phases and heavy metals in technogenic magnetic particles from contaminated soils. Environmental Pollution, 219, 19–27.

    Article  CAS  Google Scholar 

  • Zahedifar, M., Dehghani, S., Moosavi, A. A., & Gavili, E. (2016). Temporal variation of total and DTPA-extractable heavy metal contents as influenced by sewage sludge and perlite in a calcareous soil. Archives of Agronomy and Soil Science, 63, 136–149.

    Article  Google Scholar 

  • Zhang, G., Guo, X., Zhao, Z., He, Q., Wang, S., Zhu, Y., et al. (2016). Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environmental Pollution, 218, 513–522.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the German Alexander von Humboldt Foundation (Ref 3.4 - EGY - 1185373 - GF-E) for financial support of the postdoctoral scholarships of Prof. Shaheen at the University of Wuppertal, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabry M. Shaheen.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s10653-017-0044-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaheen, S.M., Antoniadis, V., Kwon, E.E. et al. Biosolids application affects the competitive sorption and lability of cadmium, copper, nickel, lead, and zinc in fluvial and calcareous soils. Environ Geochem Health 39, 1365–1379 (2017). https://doi.org/10.1007/s10653-017-9927-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-9927-4

Keywords

Navigation