Skip to main content
Log in

Nanofibrillated cellulose: properties reinvestigated

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

An Erratum to this article was published on 13 October 2017

This article has been updated

Abstract

The scientific publications on nanofibrillated cellulose (NFC) were reviewed in the light of recent developments in the field of characterization of NFC, and the evolving understanding of the material. This led to several insights, which challenged few of the established assumptions with regard to e.g. rheological properties of NFC suspensions, and factors affecting tensile strength and barrier properties of NFC films. The realizations may promote the wider application of nanofibrillated celluloses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 13 October 2017

    In the original publication of the article, the co-author name Tom Lindström was mistakenly missed out. Also the affiliation of the corresponding author was provided incorrectly. It has been updated in this erratum.

Notes

  1. http://www.paperage.com/2011news/05_31_2011stora_enso_imatra.html.

  2. http://www.pulpapernews.com/2015/09/oji-to-develop-nanocellulose-for-cosmetic-applications.

  3. http://www.japantimes.co.jp/news/2015/11/27/business/corporate-business/nippon-paper-invest-nanofibre-head-off-challenges-print/.

  4. Relative humidity.

  5. OTR can be estimated by knowing the OP and film thickness (that was given by the authors): OTR ~ OP/film-thickness.

  6. The critical value applies for systems in which the degradation process of D.P. is homogeneous and random.

References

  • Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C, Doublier JL (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80(3):677–686. doi:10.1016/j.carbpol.2009.11.045

    Article  CAS  Google Scholar 

  • Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574

    Article  CAS  Google Scholar 

  • Aulin C, Salazar-Alvarez G, Lindström T (2012) High strength, flexible and transparent nanofibrillated cellulose-nanoclayt biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 4:6622–6628

    Article  CAS  Google Scholar 

  • Belbekhouche S, Bras J, Siqueira G, Chappey C, Lebrun L, Khelifi B, Marais S, Dufresne A (2011) Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydr Polym 83(4):1740–1748. doi:10.1016/j.carbpol.2010.10.036

    Article  CAS  Google Scholar 

  • Berglund LA (2005) Cellulose-based nanocomposites. In: Mohanty A, Misra M, Drzal L (eds) Natural fibres, biopolymers and biocomposites. Taylor & Francis, Abingdon, pp 807–832

    Google Scholar 

  • Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84(3):975–983. doi:10.1016/j.carbpol.2010.12.052

    Article  CAS  Google Scholar 

  • Bessonoff M, Paltakari J (2015) A rapid method for the production of fibrillar cellulose films and an insight on their properties. Nord Pulp Pap Res J 30(1):142–148

    Article  Google Scholar 

  • Borch J (2002) Handbook of physical testing of paper, vol 2, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Boufi S, González I, Delgado-Aguilar M, Tarrès Q, Pèlach MÀ, Mutjé P (2016) Nanofibrillated cellulose as an additive in papermaking process: a review. Carbohydr Polym 154:151–166. doi:10.1016/j.carbpol.2016.07.117

    Article  CAS  Google Scholar 

  • Brännvall E (2007) Aspects on strength delivery and higher utilisation of the strength potential of softwood kraft pulp fibres. Doctoral thesis, Royal Institute of Technology, Stockholm

  • de Kort DW, Veen SJ, Van As H, Bonn D, Velikov KP, van Duynhoven JPM (2016) Yielding and flow of cellulose microfibril dispersions in the presence of a charged polymer. Soft Matter 12(21):4739–4744. doi:10.1039/c5sm02869h

    Article  Google Scholar 

  • Dong H, Snyder JF, Williams KS, Andzelm JW (2013) Cation-Induced hydrogels of cellulose nanofibrils with tunable moduli. Biomacromol 14(9):3338–3345. doi:10.1021/bm400993f

    Article  CAS  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227. doi:10.1016/j.mattod.2013.06.004

    Article  CAS  Google Scholar 

  • Fall AB, Lindström SB, Sundman O, Ödberg L, Wågberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338

    Article  CAS  Google Scholar 

  • Fall AB, Burman A, Wågberg L (2014) Cellulosic nanofibrils from eucalyptus, acacia and pine fibers. Nord Pulp Pap Res J 29(1):176–184

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Isogai A (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93(1):172–177. doi:10.1016/j.carbpol.2012.04.069

    Article  CAS  Google Scholar 

  • Fukuzumi H, Tanaka R, Saito T, Isogai A (2014) Dispersion stability and aggregation behavior of TEMPO-oxidized cellulose nanofibrils in water as a function of salt addition. Cellulose 21(3):1553–1559. doi:10.1007/s10570-014-0180-z

    Article  CAS  Google Scholar 

  • Ghanadpour M, Carosio F, Larsson PT, Wågberg L (2015) Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromol. doi:10.1021/acs.biomac.5b01117

    Google Scholar 

  • Gurnagul N, Page DH, Paice MG (1992) The effect of cellulose degradation on the strength of wood pulp fibres. Nord Pulp Pap Res J 07(3):152–154. doi:10.3183/NPPRJ-1992-07-03-p152-154

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9:1579–1585

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. Appl Polym Sci Symp 37:797–813

    CAS  Google Scholar 

  • Hou QX, Liu W, Liu ZH, Bai LL (2007) Characteristics of wood cellulose fibers treated with periodate and bisulfite. Ind Eng Chem Res 46:7830–7837. doi:10.1021/ie0704750

    Article  CAS  Google Scholar 

  • Iotti M, Gregersen ØW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19(1):137–145. doi:10.1007/s10924-010-0248-2

    Article  CAS  Google Scholar 

  • Jowkarderis L, van de Ven TM (2014) Intrinsic viscosity of aqueous suspensions of cellulose nanofibrils. Cellulose. doi:10.1007/s10570-014-0292-5

    Google Scholar 

  • Jowkarderis L, van de Ven TGM (2015) Rheology of semi-dilute suspensions of carboxylated cellulose nanofibrils. Carbohydr Polym 123:416–423. doi:10.1016/j.carbpol.2015.01.067

    Article  CAS  Google Scholar 

  • Karppinen A, Vesterinen A-H, Saarinen T, Pietikäinen P, Seppälä J (2011) Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose 18(6):1381–1390. doi:10.1007/s10570-011-9597-9

    Article  CAS  Google Scholar 

  • Karppinen A, Saarinen T, Salmela J, Laukkanen A, Nuopponen M, Seppälä J (2012) Flocculation of microfibrillated cellulose in shear flow. Cellulose 19(6):1807–1819. doi:10.1007/s10570-012-9766-5

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  • Laine J, Lindström T, Nordmark GG, Risinger G (2000) Studies on topochemical modification of cellulosic fibers. Part 1. Chemical conditions for the attachment of carboxymethyl cellulose onto fibers. Nord Pulp Pap Res J 15:520–526. doi:10.3183/NPPRJ-2000-15-05-p520-526

    Article  CAS  Google Scholar 

  • Landmér A (2015) Sambandet mellan cellulosakedjans polymerisationsgrad och styrkan i nanofibrillerad cellulosafilm. KTH, Stockholm

    Google Scholar 

  • Larsson PA, Kochumalayil JJ, Wågberg L (2013) Oxygen and water vapour barrier films with low moisture sensitivity fabricated from self-cross-linking fibrillated cellulose. In: 15th fundamental research symposium: advances in pulp and paper research, Cambridge. The pulp and paper fundamental research society, pp 851–866

  • Larsson PA, Berglund LA, Wagberg L (2014) Ductile all-cellulose nanocomposite films fabricated from core-shell structured cellulose nanofibrils. Biomacromol 15(6):2218–2223. doi:10.1021/bm500360c

    Article  CAS  Google Scholar 

  • Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15(3):425–433. doi:10.1007/s10570-007-9184-2

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764. doi:10.1016/j.carbpol.2012.05.026

    Article  CAS  Google Scholar 

  • Lindström T (2016) From microfibrillar cellulose to nanocellulose applications—an account of the evolutionary developments. In: Paper presented at the 9th international paper and coating chemistry symposium/international paper physics conference Tokyo, Japan, October 29-November 1

  • Lindström T, Aulin C, Naderi A, Ankerfors M (2014) Microfibrillated cellulose. Encyclopedia of Polymer Science and Technology. Wiley, New York

    Google Scholar 

  • Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromol 12(3):633–641. doi:10.1021/bm101296z

    Article  CAS  Google Scholar 

  • Lowys M-P, Desbrières J, Rinaudo M (2001) Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives. Food Hydrocolloid 15:25–32

    Article  CAS  Google Scholar 

  • Lozhechnikova A, Dax D, Vartiainen J, Willfor S, Xu C, Osterberg M (2014) Modification of nanofibrillated cellulose using amphiphilic block-structured galactoglucomannans. Carbohydr Polym 110:163–172. doi:10.1016/j.carbpol.2014.03.087

    Article  CAS  Google Scholar 

  • MacKintosh FC, Kas J, Janmey PA (1995) Elasticity of semiflexible biopolymer networks. Phys Rev Lett 75:4425–4428. doi:10.1103/PhysRevLett.75.4425

    Article  CAS  Google Scholar 

  • Medronho B, Romano A, Miguel M, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19(3):581–587. doi:10.1007/s10570-011-9644-6

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T (2014) Carboxymethylated nanofibrillated cellulose: effect of monovalent electrolytes on the rheological properties. Cellulose 21(5):3507–3514. doi:10.1007/s10570-014-0394-0

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T (2015) Rheological measurements on nanofibrillated cellulose systems: a science in progress. In: Monda HI (ed) Cellulose and cellulose derivatives: synthesis, modification and applications. Biochemistry research trends. Nova Science Publishers Inc, New York, pp 187–202

    Google Scholar 

  • Naderi A, Lindström T (2016) A comparative study of the rheological properties of three different nanofibrillated cellulose systems. Nord Pulp Pap Res J 31(3):354–363

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T, Pettersson T (2014a) The state of carboxymethylated nanofibrils after homogenization-aided dilution from concentrated suspensions: a rheological perspective. Cellulose 21(4):2357–2368. doi:10.1007/s10570-014-0329-9

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T, Sundström J (2014b) Carboxymethylated nanofibrillated cellulose: rheological studies. Cellulose 21(3):1561–1571. doi:10.1007/s10570-014-0192-8

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T, Sundström J (2015a) Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillated cellulose? Cellulose 22(2):1147–1157. doi:10.1007/s10570-015-0576-4

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T, Sundström J, Flodberg G (2015b) Can redispersible low-charged nanofibrillated cellulose be produced by the addition of carboxymethyl cellulose? Nord Pulp Pap Res J 30(4):568–577. doi:10.3183/NPPRJ-2015-30-04-p568-577

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T, Sundström J, Pettersson T, Flodberg G, Erlandsson J (2015c) Microfluidized carboxymethyl cellulose modified pulp: a nanofibrillated cellulose system with some attractive properties. Cellulose 22(2):1159–1173. doi:10.1007/s10570-015-0577-3

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T, Erlandsson J, Sundström J, Flodberg G (2016a) A comparative study of the properties of three nanofibrillated cellulose systems that have been produced at about the same energy consumption levels in the mechanical delamination step. Nord Pulp Pap Res J 31(3):364–371

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T, Weise CF, Flodberg G, Sundström J, Junel K, Erlandsson J, Runebjörk A (2016b) Phosphorylated nanofibrillated cellulose: production and properties. Nord Pulp Pap Res J 31(1):22–31

    Article  Google Scholar 

  • Naderi A, Larsson PT, Stevanic JS, Lindström T, Erlandsson J (2017) Effect of the size of the charged group on the properties of alkoxylated NFCs. Cellulose 24(3):1307–1317. doi:10.1007/s10570-017-1190-4

    Article  CAS  Google Scholar 

  • Nechyporchuk O, Belgacem MN, Pignon F (2014) Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena. Carbohydr Polym 112:432–439. doi:10.1016/j.carbpol.2014.05.092

    Article  CAS  Google Scholar 

  • Nechyporchuk O, Belgacem MN, Pignon F (2016) Current progress in rheology of cellulose nanofibril suspensions. Biomacromol 17(7):2311–2320. doi:10.1021/acs.biomac.6b00668

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen bonding system in cellulose I-beta from X-ray and neutron fiber diffraction. JACS 124(31):9074–9082

    Article  CAS  Google Scholar 

  • Olié N (2016) Development of a protocol for measuring the tensile properties of nanofibrillated cellulose (NFC) films. Internship report, p 1–16, Polytech Grenoble (France)

  • Österberg M, Vartiainen J, Lucenius J, Hippi U, Seppala J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. Appl Mater Interfaces 5:4640–4647

    Article  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8(6):1934–1941

    Article  Google Scholar 

  • Parry RT (1993) Principles and applications of modified atmosphere packaging of foods, 1st edn. Springer, New York. doi:10.1007/978-1-4615-2137-2

    Book  Google Scholar 

  • Quennouz N, Hashmi SM, Choi HS, Kim JW, Osuji CO (2016) Rheology of cellulose nanofibrils in the presence of surfactants. Soft Matter 12(1):157–164. doi:10.1039/C5SM01803J

    Article  CAS  Google Scholar 

  • Saarinen T, Lille M, Seppälä J (2009) Technical aspects on rheological characterization of microfibrillar cellulose water suspensions. Annu Trans Nord Rheol Soc 17:121–128

    CAS  Google Scholar 

  • Saito T, Hirota M, Fukuzumi H, Tamura N, Heux L, Kimura S, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromol 10(7):1992–1996

    Article  CAS  Google Scholar 

  • Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromol 11(9):2195–2198

    Article  CAS  Google Scholar 

  • Shimizu M, Saito T, Isogai A (2016) Water-resistant and high oxygen-barrier nanocellulose films with interfibrillar cross-linkages formed through multivalent metal ions. J Memb Sci 500:1–7. doi:10.1016/j.memsci.2015.11.002

    Article  CAS  Google Scholar 

  • Shogren RL, Peterson S, Evans KO, Kenar JA (2011) Preparation and characterization of cellulose gels from corn cobs. Carbohydr Polym 86:1351–1357

    Article  CAS  Google Scholar 

  • Siró I, Plackett D, Hedenqvist M, Ankerfors M, Lindström T (2011) Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. J Appl Polym Sci 119(5):2652–2660. doi:10.1002/app.32831

    Article  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175. doi:10.1021/ma00014a033

    Article  CAS  Google Scholar 

  • Tanaka R, Saito T, Isogai A (2012) Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO(2) systems in water at pH 4.8 or 6.8. Int J Biol Macromol 51(3):228–234. doi:10.1016/j.ijbiomac.2012.05.016

    Article  CAS  Google Scholar 

  • Tanaka R, Saito T, Ishii D, Isogai A (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 21(3):1581–1589. doi:10.1007/s10570-014-0196-4

    Article  CAS  Google Scholar 

  • Tatsumi D, Ishioka S, Matsumoto T (2002) Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions. J Soc Rheol Jpn 30:27–32

    Article  CAS  Google Scholar 

  • Tatsumi D, Inaba D, Matsumoto T (2008) Layered structure and viscoelastic properties of wet pulp fiber networks. J Soc Rheol Jpn 36:235–239. doi:10.1678/rheology.36.235

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sundbladsfonden is acknowledged for its financial support. Professor Tom Lindström is thanked for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Naderi.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s10570-017-1516-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, A. Nanofibrillated cellulose: properties reinvestigated. Cellulose 24, 1933–1945 (2017). https://doi.org/10.1007/s10570-017-1258-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1258-1

Keywords

Navigation