Skip to main content
Log in

Mechanical properties of cellulose nanomaterials studied by contact resonance atomic force microscopy

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Quantification of the mechanical properties of cellulose nanomaterials is key to the development of new cellulose nanomaterial based products. Using contact resonance atomic force microscopy we measured and mapped the transverse elastic modulus of three types of cellulosic nanoparticles: tunicate cellulose nanocrystals, wood cellulose nanocrystals, and wood cellulose nanofibrils. These modulus values were calculated with different contact mechanics models exploring the effects of cellulose geometry and thickness on the interpretation of the data. While intra-particle variations in modulus are detected, we did not observe a measureable difference in modulus between the three types of cellulose particles. Improved practices and experimental complications for the characterization of cellulosic nanomaterials with atomic force microscopy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054

    Article  CAS  Google Scholar 

  • Binnig G, Quate C, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933

    Article  Google Scholar 

  • Bobko CP, Ortega JA, Ulm FJ (2009) Comment on “Elastic modulus and hardness of muscovite and rectorite determined by nanoindentation” by G. Zhang, Z. Wei and R.E. Ferrell [Applied Clay Science 43, (2009) 271–281]. Appl Clay Sci 46(4):425–428

    Article  CAS  Google Scholar 

  • Butt HJ, Jaschke M (1995) Calculation of thermal noise in atomic force microscopy. Nanotechnology 6(1):1–7

    Article  Google Scholar 

  • Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59(1–6):1–152

    Article  CAS  Google Scholar 

  • Delafargue A, Ulm FJ (2004) Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters. Int J Solids Struct 41(26):7351–7360

    Article  Google Scholar 

  • Deng X, Joseph VR, Mai W, Wang ZL, Wu CFJ (2009) Statistical approach to quantifying the elastic deformation of nanomaterials. Proc Natl Acad Sci 106(29):11845–11850

    Article  CAS  Google Scholar 

  • Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53(2):314–326

    Article  CAS  Google Scholar 

  • Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82(5):2798–2810

    Article  CAS  Google Scholar 

  • Dri FL, Hector LG, Moon RJ, Zavattieri PD (2013) Anisotropy of the elastic properties of crystalline cellulose I-beta from first principles density functional theory with Van der Waals interactions. Cellulose 20(6):2703–2718

    Article  CAS  Google Scholar 

  • Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65

    Article  CAS  Google Scholar 

  • Gannepalli A, Yablon DG, Tsou AH, Proksch R (2011) Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM. Nanotechnology 22(35):355705

    Article  CAS  Google Scholar 

  • Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21(14):6642–6646

    Article  CAS  Google Scholar 

  • Hansen F, Brun V, Keller E, Wegner T, Meador M, Friedersdorf L (2014) Cellulose nanomaterials—a path towards commercialization workshop report. http://eprints.internano.org/2224

  • Hay J, Crawford B (2011) Measuring substrate-independent modulus of thin films. J Mater Res 26(6):727–738

    Article  CAS  Google Scholar 

  • Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) An estimation of the young’s modulus of bacterial cellulose filaments. Cellulose 15(4):507–513

    Article  CAS  Google Scholar 

  • Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64(7):1868–1873

    Article  CAS  Google Scholar 

  • Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9):2571–2576

    Article  CAS  Google Scholar 

  • Killgore JP, Hurley DC (2012) Low force AFM nanomechanics with higher-eigenmode contact resonance spectroscopy. Nanotechnology 23(5):055702

    Article  Google Scholar 

  • Killgore JP, Kelly JY, Stafford CM, Fasolka MJ, Hurley DC (2011) Quantitative subsurface contact resonance force microscopy of model polymer nanocomposites. Nanotechnology 22(17):175706

    Article  Google Scholar 

  • Kopycinska-Mller M, Striegler A, Schlegel R, Kuzeyeva N, Khler B, Wolter KJ (2012) Dual resonance excitation system for the contact mode of atomic force microscopy. Rev Sci Instrum 83(4):043703

    Article  Google Scholar 

  • Kos AB, Killgore JP, Hurley DC (2014) SPRITE: a modern approach to scanning probe contact resonance imaging. Meas Sci Technol 25(2):025405

    Article  Google Scholar 

  • Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26(6):4480–4488

    Article  CAS  Google Scholar 

  • Mariano M, Kissi NE, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Part B Polym Phys 52(12):791–806

    Article  CAS  Google Scholar 

  • McNeil LE, Grimsditch M (1993) Elastic moduli of muscovite mica. J Phys Condens Matter 5(11):1681

    Article  CAS  Google Scholar 

  • Moon R, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties, and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Paavilainen S, Róg T, Nairn J, Vattulainen I (2011) Analysis of twisting of cellulose nanofibrils in atomistic molecular dynamics simulations. J Phys Chem B 115(14):3747–3755

    Article  CAS  Google Scholar 

  • Pakzad A, Simonsen J, Heiden PA, Yassar RS (2011) Size effects on the nanomechanical properties of cellulose I nanocrystals. J Mater Res 27(3):528–536

    Article  Google Scholar 

  • Proksch R, Schffer TE, Cleveland JP, Callahan RC, Viani MB (2004) Finite optical spot size and position corrections in thermal spring constant calibration. Nanotechnology 15(9):1344

    Article  Google Scholar 

  • Rabe U, Kopycinska M, Hirsekorn S, Saldaa JM, Schneider GA, Arnold W (2002) High-resolution characterization of piezoelectric ceramics by ultrasonic scanning force microscopy techniques. J Phys D Appl Phys 35(20):2621

    Article  CAS  Google Scholar 

  • Rabe U, Janser K, Arnold W (1996) Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiment. Rev Sci Instrum 67(9):3281–3293

    Article  CAS  Google Scholar 

  • Reising AR, Moon RJ, Youngblood JP (2012) Effect of particle alignment on mechanical properties of neat cellulose nanocrystal films. J Sci Technol For Prod Process 2(6):32–41

    Google Scholar 

  • Reiner RS, Rudie AW (2013) Process scale-up of cellulose nanocrystal production to 25 kg per batch at the forest products laboratory. In: Production and applications of cellulose nanomaterials, chapter 1.1. TAPPI Press, pp 21–24

  • Renier R, Rudie A (2013) Pilot plant scale-up of tempo-pretreated cellulose nanofibrils. In: Production and applications of cellulose nanomaterials, chapter 2.1. TAPPI Press, pp 177–178

  • Rusli R, Eichhorn SJ (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl Phys Lett 93(3):033111

    Article  Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  CAS  Google Scholar 

  • Stan G, Ciobanu CV, Parthangal PM, Cook RF (2007) Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Lett 7(12):3691–3697

    Article  CAS  Google Scholar 

  • Stan G, Ciobanu CV, Thayer TP, Wang GT, Creighton JR, Purushotham KP, Bendersky LA, Cook RF (2009) Elastic moduli of faceted aluminum nitride nanotubes measured by contact resonance atomic force microscopy. Nanotechnology 20(3):035706–035712

    Article  CAS  Google Scholar 

  • Sturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2):1055–1061

    Article  CAS  Google Scholar 

  • Usov I, Nyström G, Adamcik J, Handschin S, Schütz C, Fall A, Bergström L, Mezzenga R (2015) Understanding nanocellulose chirality and structure properties relationship at the single fibril level. Nat Commun 6:7564

    Article  Google Scholar 

  • van den Berg O, Capadona JR, Weder C (2007) Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 8(4):1353–1357

    Article  Google Scholar 

  • Wagner R, Raman A, Moon R (2010) Transverse elasticity of cellulose nanocrystals via atomic force microscopy. In: Proceedings of 10th international conference on wood & biofiber plastic composites, and cellulose nanocomposites symposium. Madison, WI, pp 309–316

  • Wagner R, Moon R, Pratt J, Shaw G, Raman A (2011) Uncertainty quantification in nanomechanical measurements using the atomic force microscope. Nanotechnology 22(45):455703

    Article  Google Scholar 

  • Yamanaka K, Maruyama Y, Tsuji T, Nakamoto K (2001) Resonance frequency and Q factor mapping by ultrasonic atomic force microscopy. Appl Phys Lett 78(13):1939–1941

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Forest Products laboratory (US Forest Service) Grant No. 12-CR-11111129-076 for funding this research. We are grateful to the Forest Products laboratory for providing the wood CN samples and Professor Christoph Weder (Université de Fribourg) for providing tunicate CN samples. We are also grateful for Jason Killgore (NIST) for helpful discussions regarding the contact resonance AFM technique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Wagner.

Additional information

Partial contribution of FPL, an agency of the US government; not subject to copyright in the US.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, R., Moon, R.J. & Raman, A. Mechanical properties of cellulose nanomaterials studied by contact resonance atomic force microscopy. Cellulose 23, 1031–1041 (2016). https://doi.org/10.1007/s10570-016-0883-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-0883-4

Keywords

Navigation