Skip to main content

Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization

  • Chapter
  • First Online:
Handbook of Materials Characterization

Abstract

Scanning electron microscopy (SEM) is an important electron microscopy technique that is capable of achieving a detailed visual image of a particle with high-quality and spatial resolution. SEM is a multipurpose state-of-the-art instrument which is largely employed to observe the surface phenomena of the materials. The sample is exposed in SEM to the high-energy electron beam and gives information about topography, morphology, composition, chemistry, orientation of grains, crystallographic information, etc. of a material, and therefore SEM is a useful tool to be used for the characterization of materials. Morphology indicates the shape and size, while topography indicates the surface features of an object or “how it looks”, its texture, smoothness or roughness. Likewise, composition means elements and compounds that constitute the material, while crystallography means the arrangement of atoms in the materials. This chapter is focused on discussing briefly the SEM technique, its utilization, principle, advancement, operation, samples preparation and applications in materials science. We will explain what does SEM mean, what can be done with a SEM, how it functions and what are the different parts of the SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alyamani, A., & Lemine, O. M. (2012). FE-SEM characterization of some nanomaterial. In V. Kazmiruk (Ed.), Scanning electron microscopy. InTech. London

    Google Scholar 

  2. McMahon, G. (2007). Analytical instrumentation: A guide to laboratory, portable and miniaturized instruments (1st ed.p. 296). Chichester: Wiley.

    Book  Google Scholar 

  3. Goldstein, J. K., & Yakowitz, H. (1975). Practical scanning electron microscopy: Electron and ion microprobe analysis (p. 582). New York: Plenum Press.

    Book  Google Scholar 

  4. Goldstein, J. I., Newbury, D. E., Echlin, P., & Joy, D. C. (1992). Scanning electron microscopy and x-ray microanalysis (2nd ed.). New York: Plenum Press.

    Book  Google Scholar 

  5. Brabazon, D., & Raffer, A. (2010). 3 – advanced characterization techniques for nanostructures. In W. Ahmed & M. J. Jackson (Eds.), Emerging nanotechnologies for manufacturing (pp. 59–91). Boston: William Andrew Publishing.

    Chapter  Google Scholar 

  6. McMahon. (2007, November 11). Imaging instruments. Analytical Instrumentation.

    Google Scholar 

  7. Ram, S., Ward, E. S., & Ober, R. J. (2006). Beyond Rayleigh’s criterion: A resolution measure with application to single-molecule microscopy. PNAS, 103(12), 4457–4462.

    Article  CAS  Google Scholar 

  8. Bondeson, D. (2007). Biopolymer-based nanocomposites: Processing and properties. In Department of engineering design and materials (p. 114). Trondheim: Norwegian University of Science and Technology.

    Google Scholar 

  9. Zhou, W., Apkarian, R. P., Wang, Z. L., & Joy, D. (2006). Fundamentals of scanning electron microscopy. In Scanning microscopy for nanotechnology (pp. 1–40). New York: Springer.

    Google Scholar 

  10. Hayes, T. L., & Pease, R. F. W. (1968). The scanning electron microscope: Principles and applications in biology and medicine. Advances in biological and medical physics, 12, 85–137.

    Google Scholar 

  11. Sant’Anna, C., Campanati, L., Gadelha, C., Lourenco, D., Labati-Terra, L., Bittencourt-Silvestre, J., Benchimol, M., Cunha-e-Silva, N. L., & De Souza, W. (2005). Improvement on the visualization of cytoskeletal structures of protozoan parasites using high-resolution field emission scanning electron microscopy (FESEM). Histochemistry and Cell Biology, 124(1), 87–95.

    Article  Google Scholar 

  12. Lloyd, G. E. (1987). Atomic number and crystallographic contrast images with the SEM: A review of backscattered electron techniques. Mineralogical Magazine, 51(359), 3–19.

    Article  CAS  Google Scholar 

  13. Rahman, M. M., Jamal, A., Khan, S. B., & Faisal, M. (2011). CuO codoped ZnO based nanostructured materials for sensitive chemical sensor applications. ACS Applied Materials & Interfaces, 3, 1346–1351.

    Article  CAS  Google Scholar 

  14. Khan, S. A., Khan, S. B., Asiri, A. M., & Ahmad, I. (2016). Zirconia-based catalyst for the one-pot synthesis of coumarin through Pechmann reaction. Nanoscale Research Letters, 11, 345–353.

    Article  Google Scholar 

  15. Khan, S. A., Khan, S. B., & Asiri, A. M. (2016). Electro-catalyst based on cerium doped cobalt oxide for oxygen evolution reaction in electrochemical water splitting. Journal of Materials Science: Materials in Electronics, 27, 5294–5302.

    CAS  Google Scholar 

  16. Khan, S. B., Khan, S. A., & Asiri, A. M. (2016). A fascinating combination of Co, Ni and Al nanomaterial for oxygen evolution reaction. Applied Surface Science, 370, 445–451.

    Article  CAS  Google Scholar 

  17. Khan, S. A., Khan, S. B., & Asiri, A. M. (2016). Toward the design of Zn–Al and Zn–Cr LDH wrapped in activated carbon for the solar assisted de-coloration of organic dyes. RSC Advances, 6, 83196–83208.

    Article  CAS  Google Scholar 

  18. Khan, S. A., Khan, S. B., & Asiri, A. M. (2016). Layered double hydroxide of Cd-Al/C for the mineralization and de-coloration of dyes in solar and visible light exposure. Scientific Reports, 6, 35107.

    Article  Google Scholar 

  19. Jamal, A., Rahman, M. M., Khan, S. B., Faisal, M., Akhtar, K., Abdul Rub, M., Asiri, A. M., & Al-Youbi, A. O. (2012). Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants. Applied Surface Science, 261, 52–58.

    Article  CAS  Google Scholar 

  20. Faisal, M., Khan, S. B., Rahman, M. M., Jamal, A., & Abdullah, M. M. (2012). Fabrication of ZnO nanoparticles based sensitive methanol sensor and efficient photocatalyst. Applied Surface Science, 258, 7515–7522.

    Article  CAS  Google Scholar 

  21. Rahman, M. M., Khan, S. B., Marwani, H. M., Asiri, A. M., & Alamry, K. A. (2012). Selective iron (III) ion uptake using CuO-TiO2 nanostructure by inductively coupled plasma-optical emission spectrometry. Chemistry Central Journal, 6, 158.

    Article  Google Scholar 

  22. Rahman, M. M., Khan, S. B., Asiri, A. M., & Al-Sehemi, A. G. (2013). Chemical sensor development based on polycrystalline gold electrode embedded low-dimensional Ag2O nanoparticles. Electrochimica Acta, 112, 422–430.

    Article  CAS  Google Scholar 

  23. Qian, X., Xiong, D., Asiri, A. M., Khan, S. B., Rahman, M. M., Xu, H., & Zhao, D. (2013). A facile route to cage-like mesoporous silica coated ZSM-5 combined with Pt immobilization. Journal of Materials Chemistry A, 1, 7525–7532.

    Article  CAS  Google Scholar 

  24. Seo, J., Jeon, G., Jang, E. S., Khan, S. B., & Han, H. (2011). Preparation and properties of poly(propylene carbonate) and nanosized ZnO composite films for packaging applications. Journal of Applied Polymer Science, 122, 1101–1108.

    Article  CAS  Google Scholar 

  25. Kim, D., Lee, Y., Seo, J., Han, H., & Khan, S. B. (2013). Preparation and properties of poly(urethane acrylate) (PUA) and tetrapod ZnO whisker (TZnO-W) composite films. Polymer International, 62, 257–265.

    Article  CAS  Google Scholar 

  26. Khan, S. A., Khan, S. B., Kamal, T., Yasir, M., & Asiri, A. M. (2016). Antibacterial nanocomposites based on chitosan/Co-MCM as a selective and efficient adsorbent for organic dyes. International Journal of Biological Macromolecules, 91, 744–751.

    Article  CAS  Google Scholar 

  27. Ahmed, M. S., Kamal, T., Khan, S. A., Anwar, Y., Saeed, M. T., Asiri, A. M., & Khan, S. B. (2016). Assessment of anti-bacterial Ni-Al/chitosan composite spheres for adsorption assisted photo-degradation of organic pollutants. Current Nanoscience, 12, 569–575.

    Article  CAS  Google Scholar 

  28. Khan, S. B., Khan, S. A., Marwani, H. M., Bakhsh, E. M., Anwar, Y., Kamal, T., Asiri, A. M., & Akhtar, K. (2016). Anti-bacterial PES-cellulose composite spheres: Dual character toward extraction and catalytic reduction of nitrophenol. RSC Advances, 6, 110077–110090.

    Article  CAS  Google Scholar 

  29. Gul, S., Rehan, Z. A., Khan, S. A., Akhtar, K., Khan, M. A., Khan, M. I., Rashid, M. I., Asiri, A. M., & Khan, S. B. (2017). Antibacterial PES-CA-Ag2O nanocomposite supported Cu nanoparticles membrane toward ultrafiltration, BSA rejection and reduction of nitrophenol. Journal of Molecular Liquids, 230, 616–624.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Department of Chemistry and the Center of Excellence for Advanced Materials Research (CEAMR) at King Abdulaziz University for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sher Bahadar Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akhtar, K., Khan, S.A., Khan, S.B., Asiri, A.M. (2018). Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization. In: Sharma, S. (eds) Handbook of Materials Characterization. Springer, Cham. https://doi.org/10.1007/978-3-319-92955-2_4

Download citation

Publish with us

Policies and ethics