Skip to main content

Advertisement

Log in

From 3D printing to 3D bioprinting: the material properties of polymeric material and its derived bioink for achieving tissue specific architectures

  • Full Length Review
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

The application of 3D printing technologies fields for biological tissues, organs, and cells in the context of medical and biotechnology applications requires a significant amount of innovation in a narrow printability range. 3D bioprinting is one such way of addressing critical design challenges in tissue engineering. In a more general sense, 3D printing has become essential in customized implant designing, faithful reproduction of microenvironmental niches, sustainable development of implants, in the capacity to address issues of effective cellular integration, and long-term stability of the cellular constructs in tissue engineering. This review covers various aspects of 3D bioprinting, describes the current state-of-the-art solutions for all aforementioned critical issues, and includes various illustrative representations of technologies supporting the development of phases of 3D bioprinting. It also demonstrates several bio-inks and their properties crucial for being used for 3D printing applications. The review focus on bringing together different examples and current trends in tissue engineering applications, including bone, cartilage, muscles, neuron, skin, esophagus, trachea, tympanic membrane, cornea, blood vessel, immune system, and tumor models utilizing 3D printing technology and to provide an outlook of the future potentials and barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Copyright Permission No. 4851980393925)

Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aktaş B et al (2018) Biomaterials and immune response. CRC Press

    Google Scholar 

  • Alomari M, Mohamed FH, Basit AW, Gaisford S (2015) Personalised dosing: printing a dose of one’s own medicine. Int J Pharm 494(2):568–577

    Article  CAS  PubMed  Google Scholar 

  • Arenas M, Sabater S, Sintas A, Arguís M, Hernández V, Árquez M, López I, Rovirosa À, Puig D (2017) Individualized 3D scanning and printing for non-melanoma skin cancer brachytherapy: a financial study for its integration into clinical workflow. J Contemp Brachyther 9(3):270

    Article  Google Scholar 

  • Baldwin P, Li DJ, Auston DA, Mir HS, Yoon RS, Koval KJ (2019) Autograft, allograft, and bone graft substitutes: clinical evidence and indications for use in the setting of orthopaedic trauma surgery. J Orthop Trauma 33(4):203–213

    Article  PubMed  Google Scholar 

  • Barthes J, Dollinger C, Muller CB, Liivas U, Dupret-Bories A, Knopf-Marques H, Vrana NE (2018) Immune assisted tissue engineering via incorporation of macrophages in cell-laden hydrogels under cytokine stimulation. Front Bioeng Biotechnol 6:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Bayrak E, YilgorHuri P (2018) Engineering musculoskeletal tissue interfaces. Front Mater 5:24

    Article  Google Scholar 

  • Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL, Khademhosseini A (2014) Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14(13):2202–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binan L, Ajji A, De Crescenzo G, Jolicoeur M (2014) Approaches for neural tissue regeneration. Stem Cell Rev Reports 10(1):44–59

    Article  CAS  Google Scholar 

  • Binder KW, Zhao W, Aboushwareb T, Dice D, Atala A, Yoo JJ (2010) In situ bioprinting of the skin for burns. J Am Coll Surg 211:S76

    Article  Google Scholar 

  • Blatt NL et al (2013) Application of cell and tissue culture systems for anticancer drug screening. World Appl Sci J 23(3):315–325

    Google Scholar 

  • Bruyas A, Moeinzadeh S, Kim S, Lowenberg DW, Yang YP (2019) Effect of electron beam sterilization on three-dimensional-printed polycaprolactone/beta-tricalcium phosphate scaffolds for bone tissue engineering. Tissue Eng Part A 25(3–4):248–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brzeziński M et al (2019) Evaluation of local tissue reaction after the application of a 3D printed novel holdfast device for left atrial appendage exclusion. Ann Biomed Eng. https://doi.org/10.1007/s10439-019-02320-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Campana V, Milano GIUSEPPE, Pagano E, Barba M, Cicione C, Salonna G, Logroscino G (2014) Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 25(10):2445–2461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrow JK, Di Luca A, Dolatshahi-Pirouz A, Moroni L, Gaharwar AK (2019) 3D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineering. Regen Biomater 6(1):29–37

    Article  CAS  PubMed  Google Scholar 

  • Castro NJ, O’brien J, Zhang LG (2015) Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds. Nanoscale 7(33):14010–14022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavo M, Scaglione S (2016) Scaffold microstructure effects on functional and mechanical performance: integration of theoretical and experimental approaches for bone tissue engineering applications. Mater Sci Eng C 68:872–879

    Article  CAS  Google Scholar 

  • Chan DS, Fnais N, Ibrahim I, Daniel S, Manoukian J (2019) Exploring polycaprolactone in tracheal surgery: A scoping review of in-vivo studies. Int J Pediatr Otorhinolaryngol. https://doi.org/10.1016/j.ijporl.2019.04.039

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen CH, Shyu VBH, Chen JP, Lee MY (2014) Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering. Biofabrication 6(1):015004

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Deng C, Li J, Yao Q, Chang J, Wang L, Wu C (2019) 3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction. Biomaterials 196:138–150

    Article  CAS  PubMed  Google Scholar 

  • Chimene D et al (2016) Advanced bioinks for 3D printing: a materials science perspective. Ann Biomed Eng 44(6):2090–2102

    Article  PubMed  Google Scholar 

  • Chiu YC, Fang HY, Hsu TT, Lin CY, Shie MY (2017) The characteristics of Mineral Trioxide Aggregate/polycaprolactone 3-dimensional scaffold with osteogenesis properties for tissue regeneration. J Endod 43(6):923–929

    Article  PubMed  Google Scholar 

  • Chulpanova DS, Kitaeva KV, Tazetdinova LG, James V, Rizvanov AA, Solovyeva VV (2018) Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment. Front Pharmacol 9:259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui H et al (2017) 3D bioprinting for organ regeneration. Adv Healthc Mater 6(1):1601118

    Article  CAS  Google Scholar 

  • Daga D, Mehrotra D, Mohammad S, Chandra S, Singh G, Mehrotra D (2018) J Oral BiolCraniofac Res 8:20

    Google Scholar 

  • Daly AC, Cunniffe GM, Sathy BN, Jeon O, Alsberg E, Kelly DJ (2016) 3D bioprinting of developmentally inspired templates for whole bone organ engineering. Adv Healthc Mater 5(18):2353–2362

    Article  CAS  PubMed  Google Scholar 

  • Das S, Pati F, Choi YJ, Rijal G, Shim JH, Kim SW, Ghosh S (2015) Bioprintable, cell-laden silk fibroin–gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Actabiomaterialia 11:233–246

    CAS  Google Scholar 

  • Debry C, Vrana NE, Dupret-Bories A (2017) Implantation of an artificial larynx after total laryngectomy. N Engl J Med 376(1):97–98

    Article  PubMed  Google Scholar 

  • Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M (2018) 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact Mater 3(2):144–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Giuseppe M, Law N, Webb B, Macrae RA, Liew LJ, Sercombe TB, Doyle BJ (2018) Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. J Mech Behav Biomed Mater 79:150–157

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Gomez L, Smith BT, Kontoyiannis PD, Bittner SM, Melchiorri AJ, Mikos AG (2019) Multimaterial segmented fiber printing for gradient tissue engineering. Tissue Eng Part C Methods 25(1):12–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diker N, Gulsever S, Koroglu T, Akcay EY, Oguz Y (2018) Effects of hyaluronic acid and hydroxyapatite/beta-tricalcium phosphate in combination on bone regeneration of a critical-size defect in an experimental model. J Craniofac Surg 29(4):1087–1093

    Article  PubMed  Google Scholar 

  • Dollinger C, Ciftci S, Knopf-Marques H, Guner R, Ghaemmaghami AM, Debry C, Vrana NE (2018) Incorporation of resident macrophages in engineered tissues: multiple cell type response to microenvironment controlled macrophage-laden gelatine hydrogels. J Tissue Eng Regen Med 12(2):330–340

    Article  CAS  PubMed  Google Scholar 

  • Domingo-Roca R, Tiller B, Jackson JC, Windmill JFC (2018) Bio-inspired 3D-printed piezoelectric device for acoustic frequency selection. Sens Actuators A 271:1–8

    Article  CAS  Google Scholar 

  • Dussoyer M, Courtial EJ, Albouy M, Thépot A, Dos Santos M, Marquette CA (2019) Mechanical properties of 3D bioprinted dermis: characterization and improvement. Science Repository OÜ: Lewes, DE, USA

  • Eosoly S, Vrana NE, Lohfeld S, Hindie M, Looney L (2012) Interaction of cell culture with composition effects on the mechanical properties of polycaprolactone-hydroxyapatite scaffolds fabricated via selective laser sintering (SLS). Mater Sci Eng C 32(8):2250–2257

    Article  CAS  Google Scholar 

  • Fedorovich NE, Schuurman W, Wijnberg HM, Prins H-J, Van Weeren PR, Malda J, Alblas J, Dhert WJ (2011) Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods 18(1):33–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao G, Cui X (2016) Three-dimensional bioprinting in tissue engineering and regenerative medicine. Biotech Lett 38(2):203–211

    Article  CAS  Google Scholar 

  • Gergely RC, Pety SJ, Krull BP, Patrick JF, Doan TQ, Coppola AM, White SR (2015) Multidimensional vascularized polymers using degradable sacrificial templates. Adv Func Mater 25(7):1043–1052

    Article  CAS  Google Scholar 

  • Glatzel S, Hezwani M, Kitson PJ, Gromski PS, Schürer S, Cronin L (2016) A portable 3D printer system for the diagnosis and treatment of multidrug-resistant bacteria. Chem 1(3):494–504

    Article  CAS  Google Scholar 

  • Goto H, Yano S, Matsumori Y, Ogawa H, Blakey DC, Sone S (2004) Sensitization of tumor-associated endothelial cell apoptosis by the novel vascular-targeting agent ZD6126 in combination with cisplatin. Clin Cancer Res 10(22):7671–7676

    Article  CAS  PubMed  Google Scholar 

  • Gudapati H, Yan J, Huang Y, Chrisey DB (2014) Alginate gelation-induced cell death during laser-assisted cell printing. Biofabrication 6(3):035022

    Article  PubMed  Google Scholar 

  • Gupta S, Bissoyi A, Bit A (2018) A review on 3D printable techniques for tissue engineering. BioNanoScience 8(3):868–883

  • FN Habib, M Nikzad, SH Masood & ABM Saifullah (2016) Design and development of scaffolds for tissue engineering using three-dimensional printing for bio-based applications. 3D Print Addit Manuf, 3(2): 119–127.

  • Heemels M-T (2016) Neurodegenerative diseases. Nature 539(7628):179–180

    Article  PubMed  Google Scholar 

  • Heinrich MA, Bansal R, Lammers T, Zhang YS, Michel Schiffelers R, Prakash J (2019) 3D-bioprinted mini-brain: a glioblastoma model to study cellular interactions and therapeutics. Adv Mater 31(14):1806590

    Article  CAS  Google Scholar 

  • Highley CB, Rodell CB, Burdick JA (2015) Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv Mater 27(34):5075–5079

    Article  CAS  PubMed  Google Scholar 

  • Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue HJ, Feinberg AW (2015) Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv 1(9):e1500758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hixon KR, Lu T, Sell SA (2017) A comprehensive review of cryogels and their roles in tissue engineering applications. Actabiomaterialia 62:29–41

    CAS  Google Scholar 

  • Hoarau-Véchot J, Rafii A, Touboul C, Pasquier J (2018) Halfway between 2D and animal models: are 3D cultures the ideal tool to study cancer-microenvironment interactions? Int J Mol Sci 19(1):181

    Article  PubMed Central  CAS  Google Scholar 

  • Hsieh CT, Liao CY, Dai NT, Tseng CS, Yen BL, Hsu SH (2018) 3D printing of tubular scaffolds with elasticity and complex structure from multiple waterborne polyurethanes for tracheal tissue engineering. Appl Mater Today 12:330–341

    Article  Google Scholar 

  • Hu Y, Wu Y, Gou Z, Tao J, Zhang J, Liu Q, Kang T, Jiang S, Huang S, He J (2016) 3D-engineering of cellularized conduits for peripheral nerve regeneration. Sci Rep 6:32184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Yao B, Xie J, Fu X (2016) 3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration. Actabiomaterialia 32:170–177

    CAS  Google Scholar 

  • Isaacson A, Swioklo S, Connon CJ (2018) 3D bioprinting of a corneal stroma equivalent. Exp Eye Res 173:188–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang CH, Ahn S, Lee JW, Lee BH, Lee H, Kim G (2017) Mesenchymal stem cell-laden hybrid scaffold for regenerating subacute tympanic membrane perforation. Mater Sci Eng C 72:456–463

    Article  CAS  Google Scholar 

  • Ji S, Guvendiren M (2017) Recent advances in bioink design for 3D bioprinting of tissues and organs. Front Bioeng Biotechnol 5:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji S, Almeida E, Guvendiren M (2019a) 3D bioprinting of complex channels within cell-laden hydrogels. Actabiomaterialia 95:214–224

    CAS  Google Scholar 

  • Ji S, Dube K, Chesterman JP, Fung SL, Liaw CY, Kohn J, Guvendiren M (2019b) Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds. Biomater Sci 7(2):560–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia W, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, Khademhosseini A (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang T, Munguia-Lopez J, Flores-Torres S, Grant J, Vijayakumar S, De Leon-Rodriguez A, Kinsella JM (2018) Bioprintable alginate/gelatin hydrogel 3D in vitro model systems induce cell spheroid formation. JoVE 137:e57826

    Google Scholar 

  • Jones N (2012) Science in three dimensions: the print revolution. Nat News 487(7405):22

  • Keriquel V, Oliveira H, Rémy M, Ziane S, Delmond S, Rousseau B, Fricain JC (2017) In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep 7(1):1–10

    Article  CAS  Google Scholar 

  • Khan MS, Fon D, Li X, Tian J, Forsythe J, Garnier G, Shen W (2010) Biosurface engineering through ink jet printing. Coll Surf B 75(2):441–447

    Article  CAS  Google Scholar 

  • Kim, H., Jang, J., Kim, H. K., Kim, K. H., & Cho, D. W. (2018, October). 3D cell printed corneal stromal analogues for corneal tissue engineering. In 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS) (pp. 191–194). IEEE.

  • Kim K, Yeatts A, Dean D, Fisher JP (2010) Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng Part B Rev 16(5):523–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingsley DM, Roberge CL, Rudkouskaya A, Faulkner DE, Barroso M, Intes X, Corr DT (2019) Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies. Actabiomaterialia 95:357–370

    CAS  Google Scholar 

  • Knowlton S, Onal S, Yu CH, Zhao JJ, Tasoglu S (2015) Bioprinting for cancer research. Trends Biotechnol 33(9):504–513

    Article  CAS  PubMed  Google Scholar 

  • Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci 113(12):3179–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozin ED, Black NL, Cheng JT, Cotler MJ, McKenna MJ, Lee DJ, Remenschneider AK (2016) Design, fabrication, and in vitro testing of novel three-dimensionally printed tympanic membrane grafts. Hear Res 340:191–203

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuo CH, Wu HM (2017) Comparison of endoscopic and microscopic tympanoplasty. Eur Arch Otorhinolaryngol 274(7):2727–2732

    Article  PubMed  Google Scholar 

  • Lee, V. K., Yoo, S., Zou, H., Friedel, R., & Dai, G. (2016, December). 3D Bio-Printed Model of Glioblastoma-Vascular Niche. In TISSUE ENGINEERING PART A (Vol. 22, pp. S60-S61). 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA: MARY ANN LIEBERT, INC.

  • Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, Karande P (2014) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods 20(6):473–484

    Article  CAS  PubMed  Google Scholar 

  • Leong KF, Chua SC, Sudarmadji N, Yeong WY (2008) Engineering functionally graded tissue engineering scaffolds. J Mech Behav Biomed Mater 1(2):140–152

    Article  CAS  PubMed  Google Scholar 

  • Lewis, J. A., Kolesky, D. B., Skylar-Scott, M. A., Homan, K. A., Truby, R. L., &Gladman, A. S. (2018). U.S. Patent No. 10,117,968. Washington, DC: U.S. Patent and Trademark Office.

  • Li T, Peng M, Yang Z, Zhou X, Deng Y, Jiang C, Wang J (2018) 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone. Actabiomaterialia 71:96–107

    CAS  Google Scholar 

  • Liao HT, Lee MY, Tsai WW, Wang HC, Lu WC (2016) Osteogenesis of adipose-derived stem cells on polycaprolactone–β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. J Tissue Eng Regen Med 10(10):E337–E353

    Article  CAS  PubMed  Google Scholar 

  • Loessner D, Meinert C, Kaemmerer E, Martine LC, Yue K, Levett PA, Hutmacher DW (2016) Functionalization, preparation and use of cell-laden gelatin methacryloyl–based hydrogels as modular tissue culture platforms. Nat Protoc 11(4):727

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Liu J, Zhu W, Tang M, Lawrence N, Yu C, Gou M, Chen S (2018) 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev 132:235–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandrycky C, Wang Z, Kim K, Kim DH (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34(4):422–434

    Article  CAS  PubMed  Google Scholar 

  • McHugh KJ, Saint-Geniez M, Tao SL (2013) Topographical control of ocular cell types for tissue engineering. J Biomed Mater Res B Appl Biomater 101(8):1571–1584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Memic A, Colombani T, Eggermont LJ, Rezaeeyazdi M, Steingold J, Rogers ZJ, Bencherif SA (2019) Latest advances in cryogel technology for biomedical applications. Adv Ther 2(4):1800114

    Article  Google Scholar 

  • Meng F, Meyer CM, Joung D, Vallera DA, McAlpine MC, Panoskaltsis-Mortari A (2019) 3D bioprinted in vitro metastatic models via reconstruction of tumor microenvironments. Adv Mater 31(10):1806899

    Article  CAS  Google Scholar 

  • Mignon A, Graulus GJ, Snoeck D, Martins J, De Belie N, Dubruel P, Van Vlierberghe S (2015) pH-sensitive superabsorbent polymers: a potential candidate material for self-healing concrete. J Mater Sci 50(2):970–979

    Article  CAS  Google Scholar 

  • Mohammed, M., Fitzpatrick, A., Malyala, S., & Gibson, I. (2016, August). Customised design and development of patient specific 3D printed whole mandible implant. In Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium (pp. 1708–1717).

  • Mohamed MA, Fallahi A, El-Sokkary AM, Salehi S, Akl MA, Jafari A, Cheng C (2019) Stimuli-responsive hydrogels for manipulation of cell microenvironment: from chemistry to biofabrication technology. Prog Polym Sci 98:101147

    Article  CAS  Google Scholar 

  • Morrison RJ, Hollister SJ, Niedner MF, Mahani MG, Park AH, Mehta DK, Green GE (2015) Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3010825

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrison RJ, Kashlan KN, Flanangan CL, Wright JK, Green GE, Hollister SJ, Weatherwax KJ (2015b) Regulatory considerations in the design and manufacturing of implantable 3D-printed medical devices. Clin Transl Sci 8(5):594–600

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy SV, Atala A (2014a) Review 3D bioprinting of tissues and organs. Nat Publ Group 32(8):773–785

    CAS  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  CAS  PubMed  Google Scholar 

  • Nadgorny M, Collins J, Xiao Z, Scales PJ, Connal LA (2018) 3D-printing of dynamic self-healing cryogels with tuneable properties. Polym Chem 9(13):1684–1692

    Article  CAS  Google Scholar 

  • Naghieh S, Ravari MK, Badrossamay M, Foroozmehr E, Kadkhodaei M (2016) Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: the effect of layer penetration and post-heating. J Mech Behav Biomed Mater 59:241–250

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M et al (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11(11):1658–1666

    Article  CAS  PubMed  Google Scholar 

  • Nam K-H, Smith AS, Lone S, Kwon S, Kim D-H (2015) Biomimetic 3D tissue models for advanced high-throughput drug screening. J Lab Autom 20(3):201–215

    Article  CAS  PubMed  Google Scholar 

  • Ng WL, Qi JTZ, Yeong WY, Naing MW (2018) Proof-of-concept: 3D bioprinting of pigmented human skin constructs. Biofabrication 10(2):025005

    Article  PubMed  CAS  Google Scholar 

  • Ning L, Chen X (2017) A brief review of extrusion-based tissue scaffold bio-printing. Biotechnol J 12(8):1600671

    Article  CAS  Google Scholar 

  • Noh I, Kim N, Tran HN, Lee J, Lee C (2019) 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Biomater Res 23(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63(4–5):300–311

    Article  CAS  PubMed  Google Scholar 

  • O’Bryan CS, Bhattacharjee T, Niemi SR, Balachandar S, Baldwin N, Ellison ST, Angelini TE (2017) Three-dimensional printing with sacrificial materials for soft matter manufacturing. MRS Bull 42(8):571–577

    Article  CAS  Google Scholar 

  • Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343

    Article  CAS  PubMed  Google Scholar 

  • Panwar A, Tan LP (2016) Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules 21(6):685

    Article  PubMed Central  CAS  Google Scholar 

  • Park SH, Park SR, Chung SI, Pai KS, Min BH (2005) Tissue-engineered cartilage using fibrin/hyaluronan composite gel and its in vivo implantation. Artif Organs 29(10):838–845

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Park JY, Nam IC, Ahn M, Lee JY, Choi SH, Cho DW (2018) A rational tissue engineering strategy based on three-dimensional (3D) printing for extensive circumferential tracheal reconstruction. Biomaterials 185:276–283

    Article  CAS  PubMed  Google Scholar 

  • Pati F, Gantelius J, Svahn HA (2016) 3D bioprinting of tissue/organ models. Angew Chem Int Ed 55(15):4650–4665

    Article  CAS  Google Scholar 

  • Piard C, Baker H, Kamalitdinov T, Fisher J (2019) Bioprinted osteon-like scaffolds enhance in vivo neovascularization. Biofabrication 11(2):025013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pourchet LJ, Thepot A, Albouy M, Courtial EJ, Boher A, Blum LJ, Marquette CA (2017) Human skin 3D bioprinting using scaffold-free approach. Adv Healthc Mater 6(4):1601101

    Article  CAS  Google Scholar 

  • Purves T, Middlemas A, Agthong S, Jude EB, Boulton AJ, Fernyhough P, Tomlinson DR (2001) A role for mitogen‐activated protein kinases in the etiology of diabetic neuropathy. FASEB J 15(13):2508–2514

  • Qi D, Wu S, Kuss MA, Shi W, Chung S, Deegan PT, Duan B (2018) Mechanically robust cryogels with injectability and bioprinting supportability for adipose tissue engineering. Actabiomaterialia 74:131–142

    CAS  Google Scholar 

  • Randall MJ, Jüngel A, Rimann M, Wuertz-Kozak K (2018) Advances in the biofabrication of 3D skin in vitro: healthy and pathological models. Front Bioeng Biotechnol 6:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Roskies M, Jordan JO, Fang D, Abdallah MN, Hier MP, Mlynarek A, Tran SD (2016) Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells. J Biomater Appl 31(1):132–139

    Article  CAS  PubMed  Google Scholar 

  • Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20(1):45–53

    Article  CAS  PubMed  Google Scholar 

  • Schlachetzki J, Saliba SW, Oliveira ACPd (2013) Studying neurodegenerative diseases in culture models. Braz J Psychiatr 35:S92–S100

    Article  Google Scholar 

  • Seidenstuecker M, Kerr L, Bernstein A, Mayr HO, Suedkamp NP, Gadow R, Esslinger S (2018) 3D powder printed bioglass and β-tricalcium phosphate bone scaffolds. Materials 11(1):13

    Article  CAS  Google Scholar 

  • Singh D, Harding AJ, Albadawi E, Boissonade FM, Haycock JW, Claeyssens F (2018) Additive manufactured biodegradable poly (glycerol sebacate methacrylate) nerve guidance conduits. Actabiomaterialia 78:48–63

    CAS  Google Scholar 

  • Skardal A, Atala A (2015) Biomaterials for integration with 3-D bioprinting. Ann Biomed Eng 43(3):730–746

    Article  PubMed  Google Scholar 

  • Skardal A, Zhang J, McCoard L, Oottamasathien S, Prestwich GD (2010) Dynamically crosslinked gold nanoparticle–hyaluronan hydrogels. Adv Mater 22(42):4736–4740

    Article  CAS  PubMed  Google Scholar 

  • Sorkio A, Koch L, Koivusalo L, Deiwick A, Miettinen S, Chichkov B, Skottman H (2018) Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials 171:57–71

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6(4):1285–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suri S, Han L-H, Zhang W, Singh A, Chen S, Schmidt CE (2011) Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering. Biomed Microdevice 13(6):983–993

    Article  CAS  Google Scholar 

  • Takai K, Le A, Weaver VM, Werb Z (2016) Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget 7(50):82889

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan Z, Parisi C, Di Silvio L, Dini D, Forte AE (2017) Cryogenic 3D printing of super soft hydrogels. Sci Rep 7(1):1–11

    Article  CAS  Google Scholar 

  • Tarassoli SP, Jessop ZM, Al-Sabah A, Gao N, Whitaker S, Doak S, Whitaker IS (2018) Skin tissue engineering using 3D bioprinting: an evolving research field. J Plast Reconstr Aesthet Surg 71(5):615–623

    Article  PubMed  Google Scholar 

  • Thomas M, Willerth SM (2017) 3-D bioprinting of neural tissue for applications in cell therapy and drug screening. Front Bioeng Biotechnol 5:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian WM, Hou SP, Ma J, Zhang CL, Xu QY, Lee IS, Cui FZ (2005) Hyaluronic acid–poly-D-lysine-based three-dimensional hydrogel for traumatic brain injury. Tissue Eng 11(3–4):513–525

    Article  CAS  PubMed  Google Scholar 

  • Truong D, Fiorelli R, Barrientos ES, Melendez EL, Sanai N, Mehta S, Nikkhah M (2019) A three-dimensional (3D) organotypic microfluidic model for glioma stem cells–Vascular interactions. Biomaterials 198:63–77

    Article  CAS  PubMed  Google Scholar 

  • Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng, C 57:414–433

    Article  CAS  Google Scholar 

  • Venning FA, Wullkopf L, Erler JT (2015) Targeting ECM disrupts cancer progression. Front Oncol 5:224

    Article  PubMed  PubMed Central  Google Scholar 

  • Ventola CL (2014) Medical applications for 3D printing: current and projected uses. Pharm Ther 39(10):704

    Google Scholar 

  • Vijayavenkataraman S, Zhang S, Thaharah S, Sriram G, Lu W, Fuh J (2018) Electrohydrodynamic jet 3D printed nerve guide conduits (NGCs) for peripheral nerve injury repair. Polymers 10(7):753

    Article  PubMed Central  CAS  Google Scholar 

  • Vrana E, Builles N, Hindie M, Damour O, Aydinli A, Hasirci V (2008) Contact guidance enhances the quality of a tissue engineered corneal stroma. J Biomed Mater Res Part A 84(2):454–463

    Article  CAS  Google Scholar 

  • Vrana NE, O’Grady A, Kay E, Cahill PA, McGuinness GB (2009) Cell encapsulation within PVA-based hydrogels via freeze-thawing: a one-step scaffold formation and cell storage technique. J Tissue Eng Regen Med 3(7):567–572

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Shi W, Kuss M, Mirza S, Qi D, Krasnoslobodtsev A, Zeng J, Band H, Band V, Duan B (2018a) 3D bioprinting of breast cancer models for drug resistance study. ACS Biomater Sci Eng 4(12):4401–4411

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Ozsvar J, Aghaei-Ghareh-Bolagh B, Hiob MA, Mithieux SM, Weiss AS (2019) Freestanding hierarchical vascular structures engineered from ice. Biomaterials 192:334–345

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Shi W, Kuss M, Mirza S, Qi D, Krasnoslobodtsev A, Duan B (2018b) 3D bioprinting of breast cancer models for drug resistance study. ACS Biomater Sci Eng 4(12):4401–4411

    Article  CAS  PubMed  Google Scholar 

  • Williams DF (2019) Challenges with the development of biomaterials for sustainable tissue engineering. Front Bioeng Biotechnol 7:127. https://doi.org/10.3389/fbioe

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Das S (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827

    Article  CAS  PubMed  Google Scholar 

  • Wilson RA, Evans TRJ, Fraser AR, Nibbs RJ (2018) Immune checkpoint inhibitors: new strategies to checkmate cancer. Clin Exp Immunol 191(2):133–148

    Article  CAS  PubMed  Google Scholar 

  • Wiria FE, Leong KF, Chua CK, Liu Y (2007) Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Actabiomaterialia 3(1):1–12

    CAS  Google Scholar 

  • Włodarczyk-Biegun MK, del Campo A (2017) 3D bioprinting of structural proteins. Biomaterials 134:180–201

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Geng P, Li G, Zhao D, Zhang H, Zhao J (2015) Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials 8(9):5834–5846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S (2016) Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci Rep 6(1):1–10

    CAS  Google Scholar 

  • Xu M, Wang X, Yan Y, Yao R, Ge Y (2010) An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix. Biomaterials 31(14):3868–3877

    Article  CAS  PubMed  Google Scholar 

  • Yan WC, Davoodi P, Vijayavenkataraman S, Tian Y, Ng WC, Fuh JY, Wang CH (2018) 3D bioprinting of skin tissue: from pre-processing to final product evaluation. Adv Drug Deliv Rev 132:270–295

    Article  CAS  PubMed  Google Scholar 

  • Zawada B, Ukpai G, Powell-Palm MJ, Rubinsky B (2018) Multi-layer cryolithography for additive manufacturing. Prog Addit Manuf 3(4):245–255

    Article  Google Scholar 

  • Zhang W, Chen J, Backman LJ, Malm AD, Danielson P (2017) Surface topography and mechanical strain promote keratocyte phenotype and extracellular matrix formation in a biomimetic 3D corneal model. Adv Healthcare Mater 6(5):1601238

    Article  CAS  Google Scholar 

  • Zhao F, Xie W, Zhang W, Fu X, Gao W, Lei B, Chen X (2018) 3D printing nanoscale bioactive glass scaffolds enhance osteoblast migration and extramembranous osteogenesis through stimulating immunomodulation. Adv Healthc Mater 7(16):1800361

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 760921 (PANBioRA). KunalMitra will acknowledge the support of NASA Florida Space Grant for this research. He would also acknowledge the help of students LikithaSomasekhar and Amy Vecheck with the graphs. Albert A. Rizvanovwas funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities. Kazan Federal University was partially supported by the Russian Government Program of Competitive Growth. Arindam Bit is supported by Department of Science and Technology India (INT/RUS/RFBR/P-332) grant and Science and Engineering Research Board India (ECR/2017/001115) Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nihal Engin Vrana or Arindam Bit.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest to declare in this review work.

Data Availability

Data availability can be accessed through the external portal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vrana, N., Gupta, S., Mitra, K. et al. From 3D printing to 3D bioprinting: the material properties of polymeric material and its derived bioink for achieving tissue specific architectures. Cell Tissue Bank 23, 417–440 (2022). https://doi.org/10.1007/s10561-021-09975-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-021-09975-z

Keywords

Navigation