Skip to main content

Advertisement

Log in

Role of Erythropoiesis-Stimulating Agents in Cardiovascular Protection in CKD Patients: Reappraisal of Their Impact and Mechanisms

  • Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Erythropoiesis-stimulating agents (ESAs) have markedly reduced the need for blood transfusion for renal anemia and are included in standard therapies for patients with chronic kidney disease (CKD). Various protective effects of ESAs on the cardiovascular system have been discovered through basic research, and the effects have received much attention because the rates of cardiovascular events and mortality are high in CKD patients. However, randomized clinical trials did not provide strong evidence that ESAs exert cardioprotection in humans, including CKD patients. It is difficult to assess the cardioprotective effects of ESAs in CKD patients through the clinical data that has been reported to date because the relationship between hemoglobin level rather than ESA dose and cardiovascular event rates was examined in most studies. Interestingly, recent studies using a rat model of CKD showed that the infarct size-limiting effect of an ESA was lost when its dose was increased to a level that normalized blood hemoglobin levels, suggesting that the optimal dose of an ESA for myocardial protection is less than the dose required to normalize hemoglobin levels. Furthermore, animal models of traditional coronary risk factors or comorbidities were resistant to the cardioprotective effects of ESAs because of interruptions in signal-mediated mechanisms downstream of erythropoietin receptors. In this review, we briefly discuss basic and clinical data on the impact of anemia on coronary and systemic circulation, the effects of CKD on the cardiovascular system, and the multiple pharmacological actions of ESAs to examine whether the ESAs that are prescribed for renal anemia exert any cardioprotection in patients with CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reproduced from Nishizawa et al. [102]

Fig. 5

Reproduced from Nishizawa et al. [102]

Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data will be made available on request.

References

  1. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395:709–33.

    Article  Google Scholar 

  2. Hill NR, Fatoba ST, Oke JL, et al. Global prevalence of chronic kidney disease - a systematic review and meta-analysis. PLoS ONE. 2016;11:e0158765.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Luyckx VA, Tonelli M, Stanifer JW. The global burden of kidney disease and the sustainable development goals. Bull World Health Organ. 2018;96:414-422D.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. 2013;382:339–52.

    Article  PubMed  Google Scholar 

  5. Thompson S, James M, Wiebe N, et al. Cause of death in patients with reduced kidney function. J Am Soc Nephrol. 2015;26:2504–11.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Savira F, Magaye R, Liew D, et al. Cardiorenal syndrome: multi-organ dysfunction involving the heart, kidney and vasculature. Br J Pharmacol. 2020;177:2906–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zannad F, Rossignol P. Cardiorenal syndrome revisited. Circulation. 2018;138:929–44.

    Article  PubMed  Google Scholar 

  8. Kidney Disease Improving Global Outcomes (KDIGO) Anemia Work Group. KDIGO clinical practice guideline for anemia in chronic kidney disease. Kidney Int Suppl. 2012;2:279–335.

  9. Drüeke TB, Parfrey PS. Summary of the KDIGO guideline on anemia and comment: reading between the (guide)line(s). Kidney Int. 2012;82:952–60.

    Article  PubMed  Google Scholar 

  10. Mikhail A, Brown C, Williams JA, et al. Renal association clinical practice guideline on anaemia of chronic kidney disease. BMC Nephrol. 2017;18:345.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yamamoto H, Nishi S, Tomo T, et al. 2015 Japanese Society for Dialysis Therapy: guidelines for renal anemia in chronic kidney disease. Ren Replace Ther. 2017;3:36.

    Article  Google Scholar 

  12. Madore F, Lowrie EG, Brugnara C, et al. Anemia in hemodialysis patients: variables affecting this outcome predictor. J Am Soc Nephrol. 1997;8:1921–9.

    Article  CAS  PubMed  Google Scholar 

  13. Ma JZ, Ebben J, Xia H, Collins AJ. Hematocrit level and associated mortality in hemodialysis patients. J Am Soc Nephrol. 1999;10:610–9.

    Article  CAS  PubMed  Google Scholar 

  14. Fink J, Blahut S, Reddy M, Light P. Use of erythropoietin before the initiation of dialysis and its impact on mortality. Am J Kidney Dis. 2001;37:348–55.

    Article  CAS  PubMed  Google Scholar 

  15. Abramson JL, Jurkovitz CT, Vaccarino V, Weintraub WS, McClellan W. Chronic kidney disease, anemia, and incident stroke in a middle-aged, community-based population: the ARIC Study. Kidney Int. 2003;64:610–5.

    Article  PubMed  Google Scholar 

  16. Pisoni RL, Bragg-Gresham JL, et al. Anemia management and outcomes from 12 countries in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis. 2004;44:94–111.

    Article  PubMed  Google Scholar 

  17. Lu WX, Jones-Burton C, Zhan M, et al. Survival benefit of recombinant human erythropoietin administration prior to onset of end-stage renal disease: variations across surrogates for quality of care and time. Nephron Clin Pract. 2005;101:c79-86.

    Article  CAS  PubMed  Google Scholar 

  18. Yamamoto T, Miyazaki M, Nakayama M, et al. Impact of hemoglobin levels on renal and non-renal clinical outcomes differs by chronic kidney disease stages: the Gonryo study. Clin Exp Nephrol. 2016;20:595–602.

    Article  CAS  PubMed  Google Scholar 

  19. Hayashi T, Uemura Y, Kumagai M, et al. Effect of achieved hemoglobin level on renal outcome in non-dialysis chronic kidney disease (CKD) patients receiving epoetin beta pegol: MIRcerA CLinical Evidence on Renal Survival in CKD patients with renal anemia (MIRACLE-CKD Study). Clin Exp Nephrol. 2019;23:349–61.

    Article  CAS  PubMed  Google Scholar 

  20. Kalantar-Zadeh K. History of erythropoiesis-stimulating agents, the development of biosimilars, and the future of anemia treatment in nephrology. Am J Nephrol. 2017;45:235–47.

    Article  PubMed  Google Scholar 

  21. Besarab A, Bolton WK, Browne JK, et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med. 1998;339:584–90.

    Article  CAS  PubMed  Google Scholar 

  22. Parfrey PS, Foley RN, Wittreich BH, et al. Double-blind comparison of full and partial anemia correction in incident hemodialysis patients without symptomatic heart disease. J Am Soc Nephrol. 2005;16:2180–9.

    Article  PubMed  Google Scholar 

  23. Singh AK, Szczech L, Tang KL, et al. Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med. 2006;355:2085–98.

    Article  CAS  PubMed  Google Scholar 

  24. Drüeke TB, Locatelli F, Clyne N, et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med. 2006;355:2071–84.

    Article  PubMed  Google Scholar 

  25. Pfeffer MA, Burdmann EA, Chen CY, et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med. 2009;361:2019–32.

    Article  PubMed  Google Scholar 

  26. Mc Causland FR, Claggett B, Burdmann EA, et al. Treatment of anemia with darbepoetin prior to dialysis initiation and clinical outcomes: analyses from the trial to reduce cardiovascular events with aranesp therapy (TREAT). Am J Kidney Dis. 2019;73:309–15.

    Article  CAS  PubMed  Google Scholar 

  27. Vinhas J, Barreto C, Assunção J, Parreira L, Vaz A. Treatment of anaemia with erythropoiesis-stimulating agents in patients with chronic kidney disease does not lower mortality and may increase cardiovascular risk: a meta-analysis. Nephron Clin Pract. 2012;121:c95-101.

    Article  CAS  PubMed  Google Scholar 

  28. Voors AA, Belonje AM, Zijlstra F, et al. A single dose of erythropoietin in ST-elevation myocardial infarction. Eur Heart J. 2010;31:2593–600.

    Article  CAS  PubMed  Google Scholar 

  29. Najjar SS, Rao SV, Melloni C, et al. Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction: REVEAL: a randomized controlled trial. JAMA. 2011;305:1863–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Prunier F, Bière L, Gilard M, et al. Single high-dose erythropoietin administration immediately after reperfusion in patients with ST-segment elevation myocardial infarction: results of the erythropoietin in myocardial infarction trial. Am Heart J. 2012;163:200-7.e1.

    Article  CAS  PubMed  Google Scholar 

  31. Gao D, Ning N, Niu X, et al. Erythropoietin treatment in patients with acute myocardial infarction: a meta-analysis of randomized controlled trials. Am Heart J. 2012;164:715-727.e1.

    Article  CAS  PubMed  Google Scholar 

  32. Roubille F, Prunier F, Barrère-Lemaire S, et al. What is the role of erythropoietin in acute myocardial infarct? Bridging the gap between experimental models and clinical trials. Cardiovasc Drugs Ther. 2013;27:315–31.

    Article  CAS  PubMed  Google Scholar 

  33. Swedberg K, Young JB, Anand IS, et al. Treatment of anemia with darbepoetin alfa in systolic heart failure. N Engl J Med. 2013;368:1210–9.

    Article  CAS  PubMed  Google Scholar 

  34. Maurer MS, Teruya S, Chakraborty B, Helmke S, Mancini D. Treating anemia in older adults with heart failure with a preserved ejection fraction with epoetin alfa: single-blind randomized clinical trial of safety and efficacy. Circ Heart Fail. 2013;6:254–63.

    Article  PubMed  Google Scholar 

  35. Suresh S, Rajvanshi PK, Noguchi CT. The many facets of erythropoietin physiologic and metabolic response. Front Physiol. 2020;10:1534.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Burger D, Xenocostas A, Feng QP. Molecular basis of cardioprotection by erythropoietin. Curr Mol Pharmacol. 2009;2:56–69.

    Article  CAS  PubMed  Google Scholar 

  37. Santhanam AV, d’Uscio LV, Katusic ZS. Cardiovascular effects of erythropoietin an update. Adv Pharmacol. 2010;60:257–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stohlawetz PJ, Dzirlo L, Hergovich N, et al. Effects of erythropoietin on platelet reactivity and thrombopoiesis in humans. Blood. 2000;95:2983–9.

    Article  CAS  PubMed  Google Scholar 

  39. Stasko J, Galajda P, Ivanková J, et al. Soluble P-selectin during a single hemodialysis session in patients with chronic renal failure and erythropoietin treatment. Clin Appl Thromb Hemost. 2007;13:410–5.

    Article  CAS  PubMed  Google Scholar 

  40. Anand IS. Heart failure and anemia: mechanisms and pathophysiology. Heart Fail Rev. 2008;13:379–86.

    Article  PubMed  Google Scholar 

  41. Tune JD, Gorman MW, Feigl EO. Matching coronary blood flow to myocardial oxygen consumption. J Appl Physiol. 2004;97:404–15.

    Article  PubMed  Google Scholar 

  42. McCallinhart PE, Scandling BW, Trask AJ. Coronary remodeling and biomechanics: are we going with the flow in 2020? Am J Physiol Heart Circ Physiol. 2021;320:H584–92.

    Article  CAS  PubMed  Google Scholar 

  43. Kiel AM, Goodwill AG, Noblet JN, et al. Regulation of myocardial oxygen delivery in response to graded reductions in hematocrit: role of K+ channels. Basic Res Cardiol. 2017;112:65.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Levy PS, Kim SJ, Eckel PK, et al. Limit to cardiac compensation during acute isovolemic hemodilution: influence of coronary stenosis. Am J Physiol. 1993;265:H340–9.

    CAS  PubMed  Google Scholar 

  45. Crystal GJ, Kim SJ, Salem MR. Right and left ventricular O2 uptake during hemodilution and beta-adrenergic stimulation. Am J Physiol. 1993;265:H1769–77.

    CAS  PubMed  Google Scholar 

  46. Baer RW, Vlahakes GJ, Uhlig PN, Hoffman JI. Maximum myocardial oxygen transport during anemia and polycythemia in dogs. Am J Physiol. 1987;252:H1086–95.

    CAS  PubMed  Google Scholar 

  47. Scheel KW, Williams SE. Hypertrophy and coronary and collateral vascularity in dogs with severe chronic anemia. Am J Physiol. 1985;249:H1031–7.

    CAS  PubMed  Google Scholar 

  48. Bhatia ML, Manchanda SC, Roy SB. Coronary haemodynamic studies in chronic severe anaemia. Br Heart J. 1969;31:365–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Duke M, Abelmann WH. The hemodynamic response to chronic anemia. Circulation. 1969;39:503–15.

    Article  CAS  PubMed  Google Scholar 

  50. Roy SB, Bhatia ML, Mathur VS, Virmani S. Hemodynamic effects of chronic severe anemia. Circulation. 1963;28:346–56.

    Article  CAS  PubMed  Google Scholar 

  51. Regan TJ, Frank MJ, Lehan PH, Galante JG, Hellems HK. Myocardial blood flow and oxygen uptake during acute red cell volume increments. Circ Res. 1963;13:172–81.

    Article  CAS  PubMed  Google Scholar 

  52. Naito Y, Tsujino T, Matsumoto M, et al. Adaptive response of the heart to long-term anemia induced by iron deficiency. Am J Physiol Heart Circ Physiol. 2009;296:H585–93.

    Article  CAS  PubMed  Google Scholar 

  53. Naito Y, Sawada H, Oboshi M, et al. Cardiac remodeling in response to chronic iron deficiency: role of the erythropoietin receptor. J Hypertens. 2015;33:1267–75.

    Article  CAS  PubMed  Google Scholar 

  54. Kobak KA, Radwańska M, Dzięgała M, et al. Structural and functional abnormalities in iron-depleted heart. Heart Fail Rev. 2019;24:269–77.

    Article  CAS  PubMed  Google Scholar 

  55. Chung YJ, Swietach P, Curtis MK, et al. Iron-deficiency anemia results in transcriptional and metabolic remodeling in the heart toward a glycolytic phenotype. Front Cardiovasc Med. 2021;7:616920.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kaiafa G, Kanellos I, Savopoulos C, et al. Is anemia a new cardiovascular risk factor? Int J Cardiol. 2015;186:117–24.

    Article  PubMed  Google Scholar 

  57. Kaiafa G, Savopoulos C, Kanellos I, et al. Anemia and stroke: where do we stand? Acta Neurol Scand. 2017;135:596–602.

    Article  CAS  PubMed  Google Scholar 

  58. Sabatine MS, Morrow DA, Giugliano RP, et al. Association of hemoglobin levels with clinical outcomes in acute coronary syndromes. Circulation. 2005;111:2042–9.

    Article  CAS  PubMed  Google Scholar 

  59. Paolillo S, Scardovi AB, Campodonico J. Role of comorbidities in heart failure prognosis Part I: anaemia, iron deficiency, diabetes, atrial fibrillation. Eur J Prev Cardiol. 2020;27(2_suppl):27–34.

  60. Mamas MA, Kwok CS, Kontopantelis E, et al. Relationship between anemia and mortality outcomes in a national acute coronary syndrome cohort: insights from the UK Myocardial Ischemia National Audit Project Registry. J Am Heart Assoc. 2016;5:e003348.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Go AS, Yang J, Ackerson LM, et al. Hemoglobin level, chronic kidney disease, and the risks of death and hospitalization in adults with chronic heart failure: the Anemia in Chronic Heart Failure: Outcomes and Resource Utilization (ANCHOR) Study. Circulation. 2006;113:2713–23.

    Article  CAS  PubMed  Google Scholar 

  62. Tilling L, Clapp B. Erythropoietin: a future therapy for failing hearts? Heart Fail Rev. 2012;17:475–83.

    Article  CAS  PubMed  Google Scholar 

  63. Kang J, Park J, Lee JM, Park JJ, Choi DJ. The effects of erythropoiesis stimulating therapy for anemia in chronic heart failure: a meta-analysis of randomized clinical trials. Int J Cardiol. 2016;218:12–22.

    Article  PubMed  Google Scholar 

  64. Fox CS, Muntner P, Chen AY, et al. Use of evidence-based therapies in short-term outcomes of ST-segment elevation myocardial infarction and non-ST-segment elevation myocardial infarction in patients with chronic kidney disease: a report from the National Cardiovascular Data Acute Coronary Treatment and Intervention Outcomes Network registry. Circulation. 2010;121:357–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Keough-Ryan TM, Kiberd BA, Dipchand CS, et al. Outcomes of acute coronary syndrome in a large Canadian cohort: impact of chronic renal insufficiency, cardiac interventions, and anemia. Am J Kidney Dis. 2005;46:845–55.

    Article  PubMed  Google Scholar 

  66. Sosnov J, Lessard D, Goldberg RJ, Yarzebski J, Gore JM. Differential symptoms of acute myocardial infarction in patients with kidney disease: a community-wide perspective. Am J Kidney Dis. 2006;47:378–84.

    Article  PubMed  Google Scholar 

  67. Szummer K, Lundman P, Jacobson SH, et al. Relation between renal function, presentation, use of therapies and in-hospital complications in acute coronary syndrome: data from the SWEDEHEART register. J Intern Med. 2010;268:40–9.

    Article  CAS  PubMed  Google Scholar 

  68. Shroff GR, Li S, Herzog CA. Trends in discharge claims for acute myocardial infarction among patients on dialysis. J Am Soc Nephrol. 2017;28:1379–83.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kono K, Fujii H, Miyoshi N, et al. Coronary plaque morphology using virtual histology-intravascular ultrasound analysis in hemodialysis patients. Ther Apher Dial. 2011;15:44–50.

    Article  PubMed  Google Scholar 

  70. Hayano S, Ichimiya S, Ishii H, et al. Relation between estimated glomerular filtration rate and composition of coronary arterial atherosclerotic plaques. Am J Cardiol. 2012;109:1131–6.

    Article  PubMed  Google Scholar 

  71. Baber U, Stone GW, Weisz G, et al. Coronary plaque composition, morphology, and outcomes in patients with and without chronic kidney disease presenting with acute coronary syndromes. JACC Cardiovasc Imaging. 2012;5(3 Suppl):S53-61.

    Article  PubMed  Google Scholar 

  72. Fujii H, Kono K, Nishi S. Characteristics of coronary artery disease in chronic kidney disease. Clin Exp Nephrol. 2019;23:725–32 (Epub 2019 Mar 4).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wada M, Ueda Y, Higo T, et al. Chronic kidney disease and coronary artery vulnerable plaques. Clin J Am Soc Nephrol. 2011;6:2792–8.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bansal N, Zelnick L, Bhat Z, et al. Burden and outcomes of heart failure hospitalizations in adults with chronic kidney disease. J Am Coll Cardiol. 2019;73:2691–700.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Savarese G, Settergren C, Schrage B, et al. Comorbidities and cause-specific outcomes in heart failure across the ejection fraction spectrum: a blueprint for clinical trial design. Int J Cardiol. 2020;313:76–82.

    Article  PubMed  Google Scholar 

  76. Banerjee D, Rosano G, Herzog CA. Management of heart failure patient with CKD. Clin J Am Soc Nephrol. 2021 Jan 25:CJN.14180920.

  77. Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383:1436–46.

    Article  CAS  PubMed  Google Scholar 

  78. Kang A, Jardine MJ. SGLT2 inhibitors may offer benefit beyond diabetes. Nat Rev Nephrol. 2021;17:83–4.

    Article  CAS  PubMed  Google Scholar 

  79. Anker SD, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385:1451–61.

    Article  CAS  PubMed  Google Scholar 

  80. Edwards NC, Moody WE, Chue CD, et al. Defining the natural history of uremic cardiomyopathy in chronic kidney disease: the role of cardiovascular magnetic resonance. JACC Cardiovasc Imaging. 2014;7:703–14.

    Article  PubMed  Google Scholar 

  81. Hayer MK, Radhakrishnan A, Price AM, et al. Defining myocardial abnormalities across the stages of chronic kidney disease: a cardiac magnetic resonance imaging study. JACC Cardiovasc Imaging. 2020;13:2357–67.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ramachandra CJA, Cong S, Chan X, Yap EP, Yu F, Hausenloy DJ. Oxidative stress in cardiac hypertrophy: from molecular mechanisms to novel therapeutic targets. Free Radic Biol Med. 2021;166:297–312.

    Article  CAS  PubMed  Google Scholar 

  83. Vaziri ND. Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences. Am J Physiol Renal Physiol. 2006;290:F262–72.

    Article  CAS  PubMed  Google Scholar 

  84. Sudhakaran S, Bottiglieri T, Tecson KM, Kluger AY, McCullough PA. Alteration of lipid metabolism in chronic kidney disease, the role of novel antihyperlipidemic agents, and future directions. Rev Cardiovasc Med. 2018;19:77–88.

    PubMed  Google Scholar 

  85. Taguchi K, Elias BC, Brooks CR, Ueda S, Fukami K. Uremic toxin-targeting as a therapeutic strategy for preventing cardiorenal syndrome. Circ J. 2019;84:2–8.

    Article  PubMed  Google Scholar 

  86. Zanoli L, Lentini P, Briet M, et al. Arterial stiffness in the heart disease of CKD. J Am Soc Nephrol. 2019;30:918–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yabuuchi J, Ueda S, Yamagishi SI, et al. Association of advanced glycation end products with sarcopenia and frailty in chronic kidney disease. Sci Rep. 2020;10:17647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen Y, Zhao X, Wu H. Arterial stiffness: a focus on vascular calcification and its link to bone mineralization. Arterioscler Thromb Vasc Biol. 2020;40:1078–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hung J, Harris PJ, Uren RF, Tiller DJ, Kelly DT. Uremic cardiomyopathy–effect of hemodialysis on left ventricular function in end-stage renal failure. N Engl J Med. 1980;302:547–51.

    Article  CAS  PubMed  Google Scholar 

  90. Foley RN, Parfrey PS, Harnett JD, et al. Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int. 1995;47:186–92.

    Article  CAS  PubMed  Google Scholar 

  91. Wang X, Shapiro JI. Evolving concepts in the pathogenesis of uraemic cardiomyopathy. Nat Rev Nephrol. 2019;15:159–75.

    Article  PubMed  Google Scholar 

  92. Wang B, Wang ZM, Ji JL, et al. Macrophage-derived exosomal Mir-155 regulating cardiomyocyte pyroptosis and hypertrophy in uremic cardiomyopathy. JACC Basic Transl Sci. 2020;5:148-166. doi: . Erratum in: JACC Basic Transl Sci. 2020;5:547

  93. Sodhi K, Wang X, Chaudhry MA, et al. Central role for adipocyte Na, K-ATPase oxidant amplification loop in the pathogenesis of experimental uremic cardiomyopathy. J Am Soc Nephrol. 2020;31:1746–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wiessner C, Allegrini PR, Ekatodramis D, et al. Increased cerebral infarct volumes in polyglobulic mice overexpressing erythropoietin. J Cereb Blood Flow Metab. 2001;21:857–64.

    Article  CAS  PubMed  Google Scholar 

  95. Deten A, Shibata J, Scholz D, et al. Norepinephrine-induced acute heart failure in transgenic mice overexpressing erythropoietin. Cardiovasc Res. 2004;61:105–14.

    Article  CAS  PubMed  Google Scholar 

  96. Kilpatrick RD, Critchlow CW, Fishbane S, et al. Greater epoetin alfa responsiveness is associated with improved survival in hemodialysis patients. Clin J Am Soc Nephrol. 2008;3:1077–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Miki T, Miura T, Hotta H, et al. Endoplasmic reticulum stress in diabetic hearts abolishes erythropoietin-induced myocardial protection by impairment of phospho-glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeability transition. Diabetes. 2009;58:2863–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hotta H, Miura T, Miki T, et al. Angiotensin II type 1 receptor-mediated upregulation of calcineurin activity underlies impairment of cardioprotective signaling in diabetic hearts. Circ Res. 2010;106:129–32.

    Article  CAS  PubMed  Google Scholar 

  99. Itoh T, Kouzu H, Miki T, et al. Cytoprotective regulation of the mitochondrial permeability transition pore is impaired in type 2 diabetic Goto-Kakizaki rat hearts. J Mol Cell Cardiol. 2012;53:870–9.

    Article  CAS  PubMed  Google Scholar 

  100. Yano T, Miki T, Tanno M, et al. Hypertensive hypertrophied myocardium is vulnerable to infarction and refractory to erythropoietin-induced protection. Hypertension. 2011;57:110–5.

    Article  CAS  PubMed  Google Scholar 

  101. Andreadou I, Schulz R, Badimon L, et al. Hyperlipidaemia and cardioprotection: animal models for translational studies. Br J Pharmacol. 2020;177:5287–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nishizawa K, Yano T, et al. Chronic treatment with an erythropoietin receptor ligand prevents chronic kidney disease-induced enlargement of myocardial infarct size. Hypertension. 2016;68(3):697–706.

    Article  CAS  PubMed  Google Scholar 

  103. Tobisawa T, Yano T, Tanno M, et al. Insufficient activation of Akt upon reperfusion because of its novel modification by reduced PP2A-B55α contributes to enlargement of infarct size by chronic kidney disease. Basic Res Cardiol. 2017;112:31.

    Article  PubMed  Google Scholar 

  104. Abete P, Ferrara N, Cacciatore F, et al. Angina-induced protection against myocardial infarction in adult and elderly patients: a loss of preconditioning mechanism in the aging heart? J Am Coll Cardiol. 1997;30:947–54.

    Article  CAS  PubMed  Google Scholar 

  105. Ishihara M, Sato H, Tateishi H, Kawagoe T, et al. Beneficial effect of prodromal angina pectoris is lost in elderly patients with acute myocardial infarction. Am Heart J. 2000;139:881–8.

    Article  CAS  PubMed  Google Scholar 

  106. Ishihara M, Inoue I, Kawagoe T, et al. Ischaemic preconditioning effect of prodromal angina pectoris is lost in patients with prior myocardial infarction. Heart. 2006;92:973–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ishihara M, Inoue I, Kawagoe T, et al. Diabetes mellitus prevents ischemic preconditioning in patients with a first acute anterior wall myocardial infarction. J Am Coll Cardiol. 2001;38:1007–11.

    Article  CAS  PubMed  Google Scholar 

  108. Sivaraman V, Hausenloy DJ, Wynne AM, Yellon DM. Preconditioning the diabetic human myocardium. J Cell Mol Med. 2010;14:1740–6.

    Article  CAS  PubMed  Google Scholar 

  109. Rezende PC, Rahmi RM, Uchida AH, et al. Type 2 diabetes mellitus and myocardial ischemic preconditioning in symptomatic coronary artery disease patients. Cardiovasc Diabetol. 2015;14:66.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Casós K, Ferrer-Curriu G, Soler-Ferrer P, et al. Response of the human myocardium to ischemic injury and preconditioning: the role of cardiac and comorbid conditions, medical treatment, and basal redox status. PLoS ONE. 2017;12:e0174588.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Palmer SC, Saglimbene V, Mavridis D, et al. Erythropoiesis-stimulating agents for anaemia in adults with chronic kidney disease: a network meta-analysis. Cochrane Database Syst Rev. 2014;2014(12):CD010590. .

  112. Strippoli GF, Craig JC, Manno C, Schena FP. Hemoglobin targets for the anemia of chronic kidney disease: a meta-analysis of randomized, controlled trials. J Am Soc Nephrol. 2004;15:3154–65.

    Article  PubMed  Google Scholar 

  113. Agarwal R. Mechanisms and mediators of hypertension induced by erythropoietin and related molecules. Nephrol Dial Transplant. 2018;33:1690–8.

    Article  CAS  PubMed  Google Scholar 

  114. Babitt JL, Eisenga MF, Haase VH, et al. Controversies in optimal anemia management: conclusions from a Kidney Disease: improving Global Outcomes (KDIGO) Conference. Kidney Int. 2021;99:1280–95.

    Article  PubMed  Google Scholar 

  115. Stenvinkel P, Bárány P. Anaemia, rHuEPO resistance, and cardiovascular disease in end-stage renal failure; links to inflammation and oxidative stress. Nephrol Dial Transplant. 2002;17(Suppl 5):32–7.

    Article  CAS  PubMed  Google Scholar 

  116. Akizawa T, Gejyo F, Nishi S, et al. Positive outcomes of high hemoglobin target in patients with chronic kidney disease not on dialysis: a randomized controlled study. Ther Apher Dial. 2011;15:431–40.

    Article  CAS  PubMed  Google Scholar 

  117. Regidor DL, Kopple JD, Kovesdy CP, et al. Associations between changes in hemoglobin and administered erythropoiesis-stimulating agent and survival in hemodialysis patients. J Am Soc Nephrol. 2006;17:1181–91.

    Article  CAS  PubMed  Google Scholar 

  118. Szczech LA, Barnhart HX, Inrig JK, et al. Secondary analysis of the CHOIR trial epoetin-alpha dose and achieved hemoglobin outcomes. Kidney Int. 2008;74:791–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wong MMY, Tu C, Li Y, et al. Anemia and iron deficiency among chronic kidney disease Stages 3–5ND patients in the Chronic Kidney Disease Outcomes and Practice Patterns Study: often unmeasured, variably treated. Clin Kidney J. 2019;13:613–24.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Batchelor EK, Kapitsinou P, Pergola PE, Kovesdy CP, Jalal DI. Iron deficiency in chronic kidney disease: updates on pathophysiology, diagnosis, and treatment. J Am Soc Nephrol. 2020;31:456–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ghafourian K, Shapiro JS, Goodman L, Ardehali H. Iron and heart failure: diagnosis, therapies, and future directions. JACC Basic Transl Sci. 2020;5:300–13.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ying H, Shen Z, Wang J, Zhou B. Role of iron homeostasis in the heart: heart failure, cardiomyopathy, and ischemia-reperfusion injury. Herz. 2021 May 12. English

  123. Anker SD, Comin Colet J, Filippatos G, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009;361:2436–48.

    Article  CAS  PubMed  Google Scholar 

  124. Ponikowski P, van Veldhuisen DJ, Comin-Colet J, et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency†. Eur Heart J. 2015;36:657–68.

    Article  CAS  PubMed  Google Scholar 

  125. Ponikowski P, Kirwan BA, Anker SD, et al. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial. Lancet. 2020;396:1895–904.

    Article  CAS  PubMed  Google Scholar 

  126. Khechaduri A, Bayeva M, Chang HC, Ardehali H. Heme levels are increased in human failing hearts. J Am Coll Cardiol. 2013;61:1884–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hirata A, Minamino T, Asanuma H, et al. Erythropoietin just before reperfusion reduces both lethal arrhythmias and infarct size via the phosphatidylinositol-3 kinase-dependent pathway in canine hearts. Cardiovasc Drugs Ther. 2005;19:33–40.

    Article  CAS  PubMed  Google Scholar 

  128. Tamareille S, Ghaboura N, Treguer F, et al. Myocardial reperfusion injury management: erythropoietin compared with postconditioning. Am J Physiol Heart Circ Physiol. 2009;297:H2035-43. . Erratum in: Am J Physiol Heart Circ Physiol. 2009;297:H2035

  129. Kobayashi H, Miura T, Ishida H, et al. Limitation of infarct size by erythropoietin is associated with translocation of Akt to the mitochondria after reperfusion. Clin Exp Pharmacol Physiol. 2008;35:812–9.

    Article  CAS  PubMed  Google Scholar 

  130. Kloner RA, Jennings RB. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1. Circulation. 2001;104:2981–9.

    Article  CAS  PubMed  Google Scholar 

  131. Hausenloy DJ, Barrabes JA, Bøtker HE, et al. Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery. Basic Res Cardiol. 2016;111:70.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. 2020;17:773–89.

    Article  PubMed  Google Scholar 

  133. Nishihara M, Miura T, Miki T, et al. Erythropoietin affords additional cardioprotection to preconditioned hearts by enhanced phosphorylation of glycogen synthase kinase-3 beta. Am J Physiol Heart Circ Physiol. 2006;291:H748–55.

    Article  CAS  PubMed  Google Scholar 

  134. Bullard AJ, Govewalla P, Yellon DM. Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo. Basic Res Cardiol. 2005;100:397–403.

    Article  CAS  PubMed  Google Scholar 

  135. van der Meer P, Lipsic E, Henning RH, et al. Erythropoietin improves left ventricular function and coronary flow in an experimental model of ischemia-reperfusion injury. Eur J Heart Fail. 2004;6:853–9.

    Article  PubMed  Google Scholar 

  136. Nishihara M, Miura T, Miki T, et al. Modulation of the mitochondrial permeability transition pore complex in GSK-3beta-mediated myocardial protection. J Mol Cell Cardiol. 2007;43:564–70.

    Article  CAS  PubMed  Google Scholar 

  137. Ohori K, Miura T, Tanno M, et al. Ser9 phosphorylation of mitochondrial GSK-3beta is a primary mechanism of cardiomyocyte protection by erythropoietin against oxidant-induced apoptosis. Am J Physiol Heart Circ Physiol. 2008;295:H2079–86.

    Article  CAS  PubMed  Google Scholar 

  138. Miura T, Tanno M. The mPTP and its regulatory proteins: final common targets of signalling pathways for protection against necrosis. Cardiovasc Res. 2012;94:181–9.

    Article  CAS  PubMed  Google Scholar 

  139. Rafiee P, Shi Y, Su J, et al. Erythropoietin protects the infant heart against ischemia-reperfusion injury by triggering multiple signaling pathways. Basic Res Cardiol. 2005;100:187–97.

    Article  CAS  PubMed  Google Scholar 

  140. Li L, Takemura G, Li Y, et al. Preventive effect of erythropoietin on cardiac dysfunction in doxorubicin-induced cardiomyopathy. Circulation. 2006;113:535–43.

    Article  CAS  PubMed  Google Scholar 

  141. Krause KT, Jaquet K, Geidel S, et al. Percutaneous endocardial injection of erythropoietin: assessment of cardioprotection by electromechanical mapping. Eur J Heart Fail. 2006;8:443–50.

    Article  CAS  PubMed  Google Scholar 

  142. Schneider C, Jaquet K, Malisius R, et al. Attenuation of cardiac remodeling by endocardial injection of erythropoietin: ultrasonic strain-rate imaging in a model of hibernating myocardium. Eur Heart J. 2007;28:499–509.

    Article  PubMed  Google Scholar 

  143. van der Meer P, Lipsic E, Henning RH, et al. Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction. J Am Coll Cardiol. 2005;46:125–33.

    Article  PubMed  Google Scholar 

  144. Ammar HI, Saba S, Ammar RI, et al. Erythropoietin protects against doxorubicin-induced heart failure. Am J Physiol Heart Circ Physiol. 2011;301:H2413–21.

    Article  CAS  PubMed  Google Scholar 

  145. Schulman D, Latchman DS, Yellon DM. Effect of aging on the ability of preconditioning to protect rat hearts from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2001;281:H1630–6.

    Article  CAS  PubMed  Google Scholar 

  146. Boengler K, Konietzka I, Buechert A, et al. Loss of ischemic preconditioning’s cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. Am J Physiol Heart Circ Physiol. 2007;292:H1764–9.

    Article  CAS  PubMed  Google Scholar 

  147. Sack MN, Murphy E. The role of comorbidities in cardioprotection. J Cardiovasc Pharmacol Ther. 2011;16:267–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Miki T, Itoh T, Sunaga D, Miura T. Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning. Cardiovasc Diabetol. 2012;11:67.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Miki T, Miura T, Tsuchida A, et al. Cardioprotective mechanism of ischemic preconditioning is impaired by postinfarct ventricular remodeling through angiotensin II type 1 receptor activation. Circulation. 2000;102:458–63.

    Article  CAS  PubMed  Google Scholar 

  150. Andreadou I, Iliodromitis EK, Lazou A, et al. Effect of hypercholesterolaemia on myocardial function, ischaemia-reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. Br J Pharmacol. 2017;174:1555–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Dikow R, Kihm LP, Zeier M, et al. Increased infarct size in uremic rats: reduced ischemia tolerance? J Am Soc Nephrol. 2004;15:1530–6.

    Article  PubMed  Google Scholar 

  152. Byrne CJ, McCafferty K, Kieswich J, et al. Ischemic conditioning protects the uremic heart in a rodent model of myocardial infarction. Circulation. 2012;125:1256–65.

    Article  PubMed  Google Scholar 

  153. Sato T, Yano T, Nishizawa K, et al. Protective effect of treatment with a continuous erythropoietin receptor activator on CKD-induced myocardial intolerance to ischemia/reperfusion injury is lost by use of its excessive dose. [Abstract] J Mol Cell Cardiol 2020; 140 (Suppl.): 41–42.

  154. Sawicki KT, Shang M, Wu R, et al. Increased heme levels in the heart lead to exacerbated ischemic injury. J Am Heart Assoc. 2015;4:e002272.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Chung J, Wittig JG, Ghamari A, et al. Erythropoietin signaling regulates heme biosynthesis Elife. 2017;6:e24767.

    PubMed  Google Scholar 

  156. Zhang H, Wang S, Liu D, et al. EpoR-tdTomato-Cre mice enable identification of EpoR expression in subsets of tissue macrophages and hematopoietic cells. Blood. 2021 Jun 7:blood.2021011410. .

  157. Lu KY, Ching LC, Su KH, et al. Erythropoietin suppresses the formation of macrophage foam cells: role of liver X receptor alpha. Circulation. 2010;121:1828–37.

    Article  CAS  PubMed  Google Scholar 

  158. Buemi M, Allegra A, Corica F, et al. Does erythropoietin administration affect progression of atherosclerosis in Watanabe heritable hyperlipaemic rabbits? Nephrol Dial Transplant. 1998;13:2706–8.

    Article  CAS  PubMed  Google Scholar 

  159. Arend N, Hilgers KF, Campean V, et al. Darbepoetin alpha reduces oxidative stress and chronic inflammation in atherosclerotic lesions of apo E deficient mice in experimental renal failure. PLoS ONE. 2014;9:e88601.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Dursun E, Monari E, Cuoghi A, et al. Proteomic profiling during atherosclerosis progression using SELDI-TOF-MS: effect of darbepoetin treatment. Acta Histochem. 2010;112:432–43.

    Article  CAS  PubMed  Google Scholar 

  161. Cui J, Zhang F, Cao W, et al. Erythropoietin alleviates hyperglycaemia-associated inflammation by regulating macrophage polarization via the JAK2/STAT3 signalling pathway. Mol Immunol. 2018;101:221–8.

    Article  CAS  PubMed  Google Scholar 

  162. Warren JS, Zhao Y, Yung R, Desai AJ. Recombinant human erythropoietin suppresses endothelial cell apoptosis and reduces the ratio of Bax to Bcl-2 proteins in the aortas of apolipoprotein E-deficient mice. Cardiovasc Pharmacol. 2011;57:424–33.

    Article  CAS  Google Scholar 

  163. Serizawa K, Yogo K, Tashiro Y, et al. Epoetin beta pegol prevents endothelial dysfunction as evaluated by flow-mediated dilation in chronic kidney disease rats. Eur J Pharmacol. 2015;767:10–6.

    Article  CAS  PubMed  Google Scholar 

  164. Lindenblatt N, Menger MD, Klar E, Vollmar B. Darbepoetin-alpha does not promote microvascular thrombus formation in mice: role of eNOS-dependent protection through platelet and endothelial cell deactivation. Arterioscler Thromb Vasc Biol. 2007;27:1191–8.

    Article  CAS  PubMed  Google Scholar 

  165. Toba H, Kojima Y, Wang J, et al. Erythropoietin attenuated vascular dysfunction and inflammation by inhibiting NADPH oxidase-derived superoxide production in nitric oxide synthase-inhibited hypertensive rat aorta. Eur J Pharmacol. 2012;691:190–7.

    Article  CAS  PubMed  Google Scholar 

  166. Toba H, Morishita M, Tojo C, et al. Recombinant human erythropoietin ameliorated endothelial dysfunction and macrophage infiltration by increasing nitric oxide in hypertensive 5/6 nephrectomized rat aorta. Eur J Pharmacol. 2011;656:81–7.

    Article  CAS  PubMed  Google Scholar 

  167. van Loon RL, Bartelds B, Wagener FA, et al. Erythropoietin attenuates pulmonary vascular remodeling in experimental pulmonary arterial hypertension through interplay between endothelial progenitor cells and heme oxygenase. Front Pediatr. 2015;3:71. . eCollection 2015.

  168. Yang WS, Chang JW, Han NJ, Park SK. Darbepoetin alfa suppresses tumor necrosis factor-alpha-induced endothelin-1 production through antioxidant action in human aortic endothelial cells: role of sialic acid residues. Free Radic Biol Med. 2011;50:1242–51.

    Article  CAS  PubMed  Google Scholar 

  169. Chang JR, Sun N, Liu Y, et al. Erythropoietin attenuates vascular calcification by inhibiting endoplasmic reticulum stress in rats with chronic kidney disease. Peptides. 2020;123:170181.

    Article  CAS  PubMed  Google Scholar 

  170. He J, Zhong X, Zhao L, Gan H. JAK2/STAT3/BMP-2 axis and NF-kappaB pathway are involved in erythropoietin-induced calcification in rat vascular smooth muscle cells. Clin Exp Nephrol. 2019;23:501–12.

    Article  CAS  PubMed  Google Scholar 

  171. Lipsic E, Westenbrink BD, van der Meer P, et al. Low-dose erythropoietin improves cardiac function in experimental heart failure without increasing haematocrit. Eur J Heart Fail. 2008;10:22–9.

    Article  CAS  PubMed  Google Scholar 

  172. Westenbrink BD, Lipsic E, van der Meer P, et al. Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization. Eur Heart J. 2007;28:2018–27.

    Article  CAS  PubMed  Google Scholar 

  173. Takemura G, Kanoh M, Minatoguchi S, Fujiwara H. Cardiomyocyte apoptosis in the failing heart–a critical review from definition and classification of cell death. Int J Cardiol. 2013;167:2373–86.

    Article  PubMed  Google Scholar 

  174. Ogino A, Takemura G, Kawasaki M, et al. Erythropoietin receptor signaling mitigates renal dysfunction-associated heart failure by mechanisms unrelated to relief of anemia. J Am Coll Cardiol. 2010;56:1949–58.

    Article  CAS  PubMed  Google Scholar 

  175. Cantarelli C, Angeletti A, Cravedi P. Erythropoietin, a multifaceted protein with innate and adaptive immune modulatory activity. Am J Transplant. 2019;19:2407–14.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Gut N, Piecha G, Aldebssi F, et al. Erythropoietin combined with ACE inhibitor prevents heart remodeling in 5/6 nephrectomized rats independently of blood pressure and kidney function. Am J Nephrol. 2013;38:124–35.

    Article  CAS  PubMed  Google Scholar 

  177. Bahlmann FH, Song R, Boehm SM, et al. Low-dose therapy with the long-acting erythropoietin analogue darbepoetin alpha persistently activates endothelial Akt and attenuates progressive organ failure. Circulation. 2004;110:1006–12.

    Article  CAS  PubMed  Google Scholar 

  178. Ribeiro S, Garrido P, Fernandes J, et al. Renal risk-benefit determinants of recombinant human erythropoietin therapy in the remnant kidney rat model - hypertension, anaemia, inflammation and drug dose. Clin Exp Pharmacol Physiol. 2016;43:343–54.

    Article  CAS  PubMed  Google Scholar 

  179. Jie KE, van der Putten K, Bergevoet MW, et al. Short- and long-term effects of erythropoietin treatment on endothelial progenitor cell levels in patients with cardiorenal syndrome. Heart. 2011;97:60–5.

    Article  CAS  PubMed  Google Scholar 

  180. O’Sullivan JF, Leblond AL, O’Dea J, et al. Multidetector computed tomography accurately defines infarct size, but not microvascular obstruction after myocardial infarction. J Am Coll Cardiol. 2013;61:208–10.

    Article  PubMed  Google Scholar 

  181. Jablonowski R, Wilson MW, Do L, Hetts SW, Saeed M. Multidetector CT measurement of myocardial extracellular volume in acute patchy and contiguous infarction: validation with microscopic measurement. Radiology. 2015;274:370–8.

    Article  PubMed  Google Scholar 

  182. Ibanez B, Aletras AH, Arai AE, et al. Cardiac MRI endpoints in myocardial infarction experimental and clinical trials: JACC Scientific Expert Panel. J Am Coll Cardiol. 2019;74:238–56.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Semenza GL. Pharmacologic targeting of hypoxia-inducible factors. Annu Rev Pharmacol Toxicol. 2019;59:379–403.

    Article  CAS  PubMed  Google Scholar 

  184. Locatelli F, Del Vecchio L. Are prolyl-hydroxylase inhibitors potential alternative treatments for anaemia in patients with chronic kidney disease? Nephrol Dial Transplant. 2020;35:926–32.

    Article  CAS  PubMed  Google Scholar 

  185. Holdstock L, Meadowcroft AM, Maier R, et al. Four-week studies of oral hypoxia-inducible factor-prolyl hydroxylase inhibitor GSK1278863 for treatment of anemia. J Am Soc Nephrol. 2016;27:1234–44.

    Article  CAS  PubMed  Google Scholar 

  186. Provenzano R, Besarab A, Wright S, et al. Roxadustat (FG-4592) versus epoetin alfa for anemia in patients receiving maintenance hemodialysis: a phase 2, randomized, 6- to 19-week, open-label, active-comparator, dose-ranging, safety and exploratory efficacy study. Am J Kidney Dis. 2016;67:912–24.

    Article  CAS  PubMed  Google Scholar 

  187. Chen N, Hao C, Liu BC, et al. Roxadustat treatment for anemia in patients undergoing long-term dialysis. N Engl J Med. 2019;381:1011–22.

    Article  CAS  PubMed  Google Scholar 

  188. Akizawa T, Nangaku M, Yonekawa T, et al. Efficacy and safety of daprodustat compared with darbepoetin alfa in Japanese hemodialysis patients with anemia: a randomized, double-blind, phase 3 trial. Clin J Am Soc Nephrol. 2020;15:1155–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Nangaku M, Hamano T, Akizawa T, et al. Daprodustat compared with epoetin beta pegol for anemia in Japanese patients not on dialysis: a 52-week randomized open-label phase 3 trial. Am J Nephrol. 2021;52:26–35.

    Article  CAS  PubMed  Google Scholar 

  190. Singh AK, Carroll K, McMurray JJV, et al. Daprodustat for the treatment of anemia in patients not undergoing dialysis. N Engl J Med. 2021 Nov 5.

  191. Singh AK, Carroll K, Perkovic V, et al. Daprodustat for the treatment of anemia in patients undergoing dialysis. N Engl J Med. 2021 Nov 5.

  192. Chertow GM, Pergola PE, Farag YMK, et al. Vadadustat in patients with anemia and non-dialysis-dependent CKD. N Engl J Med. 2021;384:1589–600.

    Article  CAS  PubMed  Google Scholar 

  193. Barratt J, Andric B, Tataradze A, et al. Roxadustat for the treatment of anaemia in chronic kidney disease patients not on dialysis: a phase 3, randomized, open-label, active-controlled study (DOLOMITES). Nephrol Dial Transplant. 2021;36:1616–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Barratt J, Sulowicz W, Schömig M, et al. Efficacy and cardiovascular safety of roxadustat in dialysis-dependent chronic kidney disease: pooled analysis of four phase 3 studies. Adv Ther. 2021;38:5345–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Eckardt KU, Agarwal R, Aswad A, et al. Safety and efficacy of vadadustat for anemia in patients undergoing dialysis. N Engl J Med. 2021;384:1601–12.

    Article  CAS  PubMed  Google Scholar 

  196. Packer M. Mutual antagonism of hypoxia-inducible factor isoforms in cardiac, vascular, and renal disorders. JACC Basic Transl Sci. 2020;5:961–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs. Michinori Hirata and Ryohei Kawasaki, Product Research Department, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan, for valuable suggestions and support for the present work. We are grateful to Mr. Stewart Chisholm and editors at Springer Nature Author Services for proofreading and editing of the manuscript.

Funding

This study was supported by Grant-in Aid for Scientific Research from the Japan Society for the Promotion of Science (17K16016, 19K08522, 19K08544, 21K08035), a Grant for Education and Research from Hokkaido University of Science, and a Grant for Research from Chugai Pharmaceutical Co., Ltd.

Author information

Authors and Affiliations

Authors

Contributions

TeM had the idea for the article, TeM and AT performed the literature search, and TS, TY, TaM, NT, and KN performed data analysis. The first draft of the manuscript was written by TeM and AT and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tetsuji Miura.

Ethics declarations

Ethical Approval

Animal experiments included in this article were conducted in strict accordance with the Guide for the Care and Use of Laboratory Animals published by National Research Council of the National Academies, USA (2011) and were approved by the Animal Use Committee of Sapporo Medical University (16–097).

Consent for Publication

All authors consented to publish this study.

Conflict of Interest

This study was partly supported by a grant from Chugai Pharmaceutical, Tokyo, Japan as stated above.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miura, T., Sato, T., Yano, T. et al. Role of Erythropoiesis-Stimulating Agents in Cardiovascular Protection in CKD Patients: Reappraisal of Their Impact and Mechanisms. Cardiovasc Drugs Ther 37, 1175–1192 (2023). https://doi.org/10.1007/s10557-022-07321-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-022-07321-3

Keywords

Navigation