Skip to main content

Advertisement

Log in

Erythropoietin Just Before Reperfusion Reduces Both Lethal Arrhythmias and Infarct Size via the Phosphatidylinositol-3 Kinase-Dependent Pathway in Canine Hearts

  • Basic Pharmacology
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Although recent studies suggest that erythropoietin (EPO) may reduce multiple features of the myocardial ischemia/reperfusion injury, the cellular mechanisms and the clinical implications of EPO-induced cardioprotection are still unclear. Thus, in this study, we clarified dose-dependent effects of EPO administered just before reperfusion on infarct size and the incidence of ventricular fibrillation and evaluated the involvement of the phosphatidylinositol-3 (PI3) kinase in the in vivo canine model. The canine left anterior descending coronary artery was occluded for 90 min followed by 6 h of reperfusion. A single intravenous administration of EPO just before reperfusion significantly reduced infarct size (high dose (1,000 IU/kg): 7.7 ± 1.6%, low dose (100 IU/kg): 22.1 ± 2.4%, control: 40.0 ± 3.6%) in a dose-dependent manner. Furthermore, the high, but not low, dose of EPO administered as a single injection significantly reduced the incidence of ventricular fibrillation during reperfusion (high dose: 0%, low dose: 40.0%, control: 50.0%). An intracoronary administration of a PI3 kinase inhibitor, wortmannin, blunted the infarct size-limiting and anti-arrhythmic effects of EPO. Low and high doses of EPO equally induced Akt phosphorylation and decreased the equivalent number of TUNEL-positive cells in the ischemic myocardium of dogs. These effects of EPO were abolished by the treatment with wortmannin. In conclusion, EPO administered just before reperfusion reduced infarct size and the incidence of ventricular fibrillation via the PI3 kinase-dependent pathway in canine hearts. EPO administration can be a realistic strategy for the treatment of acute myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siren AL, Fratelli M, Brines M, et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci USA 2001;98:4044–4049.

    CAS  PubMed  Google Scholar 

  2. van der Meer P, Voors AA, Lipsic E, van Gilst WH, van Veldhuisen DJ. Erythropoietin in cardiovascular diseases. Eur Heart J 2004;25:285–291.

    CAS  PubMed  Google Scholar 

  3. Calvillo L, Latini R, Kajstura J, et al. Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci USA 2003;100:4802–4806.

    CAS  PubMed  Google Scholar 

  4. Tramontano AF, Muniyappa R, Black AD, et al. Erythropoietin protects cardiac myocytes from hypoxia-induced apoptosis through an Akt-dependent pathway. Biochem Biophys Res Commun 2003;308:990–994.

    CAS  PubMed  Google Scholar 

  5. Moon C, Krawczyk M, Ahn D, et al. Erythropoietin reduces myocardial infarction and left ventricular functional decline after coronary artery ligation in rats. Proc Natl Acad Sci USA 2003;100:11612–11617.

    CAS  PubMed  Google Scholar 

  6. Parsa CJ, Matsumoto A, Kim J, et al. A novel protective effect of erythropoietin in the infarcted heart. J Clin Invest 2003;112:999–1007.

    CAS  PubMed  Google Scholar 

  7. Parsa CJ, Kim J, Riel RU, et al. Cardioprotective effects of erythropoietin in the reperfused ischemic heart: A potential role for cardiac fibroblasts. J Biol Chem 2004;279:20655–20662.

    CAS  PubMed  Google Scholar 

  8. Lipsic E, van der Meer P, Henning RH, et al. Timing of erythropoietin treatment for cardioprotection in ischemia/reperfusion. J Cardiovasc Pharmacol 2004;44:473–479.

    Google Scholar 

  9. NKF-DOQI clinical practice guidelines for the treatment of anemia of chronic renal failure. National Kidney Foundation-Dialysis Outcomes Quality Initiative. Am J Kidney Dis 1997;30:S192–S240.

    Google Scholar 

  10. Cai Z, Semenza GL. Phosphatidylinositol-3-kinase signaling is required for erythropoietin-mediated acute protection against myocardial ischemia/reperfusion injury. Circulation 2004;109:2050–2053.

    CAS  PubMed  Google Scholar 

  11. Woodcock EA, Matkovich SJ, Binah O. Ins(1,4,5)P3 and cardiac dysfunction. Cardiovasc Res 1998;40:251–256.

    CAS  PubMed  Google Scholar 

  12. Billman GE, Hallaq H, Leaf A. Prevention of ischemia-induced ventricular fibrillation by omega 3 fatty acids. Proc Natl Acad Sci USA 1994;91:4427–4430.

    CAS  PubMed  Google Scholar 

  13. Ogita H, Node K, Asanuma H, et al. Raloxifene improves coronary perfusion, cardiac contractility, and myocardial metabolism in the ischemic heart: Role of phosphatidylinositol 3-kinase/Akt pathway. J Cardiovasc Pharmacol 2004;43:821–829.

    CAS  PubMed  Google Scholar 

  14. Ogita H, Node K, Asanuma H, et al. Amelioration of ischemia- and reperfusion-induced myocardial injury by the selective estrogen receptor modulator, raloxifene, in the canine heart. J Am Coll Cardiol 2002;40:998–1005.

    CAS  PubMed  Google Scholar 

  15. Hale SL, Lange R, Alker KJ, Kloner RA. Correlates of reperfusion ventricular fibrillation in dogs. Am J Cardiol 1984;53:1397–1400.

    CAS  PubMed  Google Scholar 

  16. Bolli R, Patel B. Factors that determine the occurrence of reperfusion arrhythmias. Am Heart J 1988;115:20–29.

    CAS  PubMed  Google Scholar 

  17. Ehrenreich H, Hasselblatt M, Dembowski C, et al. Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 2002;8:495–505.

    CAS  PubMed  Google Scholar 

  18. Rosenzweig MQ, Bender CM, Lucke JP, Yasko JM, Brufsky AM. The decision to prematurely terminate a trial of R-HuEPO due to thrombotic events. J Pain Symptom Manage 2004;27:185–190.

    PubMed  Google Scholar 

  19. Berridge MV, Fraser JK, Carter JM, Lin FK. Effects of recombinant human erythropoietin on megakaryocytes and on platelet production in the rat. Blood 1988;72:970–977.

    CAS  PubMed  Google Scholar 

  20. Tang WW, Stead RA, Goodkin DA. Effects of Epoetin alfa on hemostasis in chronic renal failure. Am J Nephrol 1998;18:263–273.

    CAS  PubMed  Google Scholar 

  21. Ohno M, Takemura G, Ohno A, et al. “Apoptotic” myocytes in infarct area in rabbit hearts may be oncotic myocytes with DNA fragmentation: Analysis by immunogold electron microscopy combined with In situ nick end-labeling. Circulation 1998;98:1422–1430.

    CAS  PubMed  Google Scholar 

  22. Mizukami Y, Hirata T, Yoshida K. Nuclear translocation of PKC zeta during ischemia and its inhibition by wortmannin, an inhibitor of phosphatidylinositol 3-kinase. FEBS Lett 1997;401:247–251.

    CAS  PubMed  Google Scholar 

  23. Mizukami Y, Kobayashi S, Uberall F, Hellbert K, Kobayashi N, Yoshida K. Nuclear mitogen-activated protein kinase activation by protein kinase czeta during reoxygenation after ischemic hypoxia. J Biol Chem 2000;275:19921–19927.

    CAS  PubMed  Google Scholar 

  24. Takeda H, Matozaki T, Takada T, et al. PI 3-kinase gamma and protein kinase C-zeta mediate RAS-independent activation of MAP kinase by a Gi protein-coupled receptor. Embo J 1999;18:386–395.

    CAS  PubMed  Google Scholar 

  25. Ping P, Zhang J, Zheng YT, et al. Demonstration of selective protein kinase C-dependent activation of Src and Lck tyrosine kinases during ischemic preconditioning in conscious rabbits. Circ Res 1999;85:542–550.

    CAS  PubMed  Google Scholar 

  26. Sanada S, Kitakaze M, Papst PJ, et al. Role of phasic dynamism of p38 mitogen-activated protein kinase activation in ischemic preconditioning of the canine heart. Circ Res 2001;88:175–180.

    CAS  PubMed  Google Scholar 

  27. Kristal B, Shurtz-Swirski R, Shasha SM, et al. Interaction between erythropoietin and peripheral polymorphonuclear leukocytes in hemodialysis patients. Nephron 1999;81:406–413.

    CAS  PubMed  Google Scholar 

  28. Chattopadhyay A, Choudhury TD, Bandyopadhyay D, Datta AG. Protective effect of erythropoietin on the oxidative damage of erythrocyte membrane by hydroxyl radical. Biochem Pharmacol 2000;59:419–425.

    CAS  PubMed  Google Scholar 

  29. Stein RC. Prospects for phosphoinositide 3-kinase inhibition as a cancer treatment. Endocr Relat Cancer 2001;8:237–248.

    CAS  PubMed  Google Scholar 

  30. Jeroudi MO, Hartley CJ, Bolli R. Myocardial reperfusion injury: Role of oxygen radicals and potential therapy with antioxidants. Am J Cardiol 1994;73:2B– 7B.

    CAS  PubMed  Google Scholar 

  31. Van Wagoner DR, Bond M. Reperfusion arrhythmias: New insights into the role of the Na(+)/Ca(2+) exchanger. J Mol Cell Cardiol 2001;33:2071–2074.

    CAS  PubMed  Google Scholar 

  32. Marshall AJ, Niiro H, Yun TJ, Clark EA. Regulation of B-cell activation and differentiation by the phosphatidylinositol 3-kinase and phospholipase Cgamma pathway. Immunol Rev 2000;176:30–46.

    CAS  PubMed  Google Scholar 

  33. Lee YM, Hsiao G, Chen HR, Chen YC, Sheu JR, Yen MH. Magnolol reduces myocardial ischemia/reperfusion injury via neutrophil inhibition in rats. Eur J Pharmacol 2001;422:159–167.

    CAS  PubMed  Google Scholar 

  34. Hansen PR. Myocardial reperfusion injury: Experimental evidence and clinical relevance. Eur Heart J 1995;16:734–740.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Minamino MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirata, A., Minamino, T., Asanuma, H. et al. Erythropoietin Just Before Reperfusion Reduces Both Lethal Arrhythmias and Infarct Size via the Phosphatidylinositol-3 Kinase-Dependent Pathway in Canine Hearts. Cardiovasc Drugs Ther 19, 33–40 (2005). https://doi.org/10.1007/s10557-005-6895-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-005-6895-1

Key Words

Navigation