Skip to main content

Advertisement

Log in

Insufficient activation of Akt upon reperfusion because of its novel modification by reduced PP2A-B55α contributes to enlargement of infarct size by chronic kidney disease

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD) increases myocardial infarct size by an unknown mechanism. Here we examined the hypothesis that impairment of protective PI3K-PDK1-Akt and/or mTORC-Akt signaling upon reperfusion contributes to CKD-induced enlargement of infarct size. CKD was induced in rats by 5/6 nephrectomy (SNx group) 4 weeks before myocardial infarction experiments, and sham-operated rats served as controls (Sham group). Infarct size as a percentage of area at risk after ischemia/reperfusion was significantly larger in the SNx group than in the Sham group (56.3 ± 4.6 vs. 41.4 ± 2.0%). In SNx group, myocardial p-Akt-Thr308 level at baseline was elevated, and reperfusion-induced phosphorylation of p-Akt-Ser473, p-p70s6K and p-GSK-3β was significantly suppressed. Inhibition of Akt-Ser473 phosphorylation upon reperfusion by Ku-0063794 significantly increased infarct size in the Sham group but not in the SNx group. There was no difference between the two groups in activities of mTORC2 and PDK1 and protein level of PTEN. However, the PP2A regulatory subunit B55α, which specifically targets Akt-Thr308, was reduced by 24% in the SNx group. Knockdown of B55α by siRNA increased baseline p-Akt-Thr308 and blunted Akt-Ser473 phosphorylation in response to insulin-like growth factor-1 (IGF-1) in H9c2 cells. A blunted response of Akt-Ser473 to IGF-1 was also observed in HEK293 cells transfected with a p-Thr308-mimetic Akt mutant (T308D). These results indicate that increased Akt-Thr308 phosphorylation by down-regulation of B55α inhibits Akt-Ser473 phosphorylation upon reperfusion in CKD and that the impaired Akt activation by insufficient Ser473 phosphorylation upon reperfusion contributes to infarct size enlargement by CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ananthanarayanan B, Fosbrink M, Rahdar M, Zhang J (2007) Live-cell molecular analysis of Akt activation reveals roles for activation loop phosphorylation. J Biol Chem 282:36634–36641. doi:10.1074/jbc.M706227200

    Article  CAS  PubMed  Google Scholar 

  2. Betz C, Stracka D, Prescianotto-Baschong C, Frieden M, Demaurex N, Hall MN (2013) mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc Natl Acad Sci USA 10:12526–12534. doi:10.1073/pnas.1302455110

    Article  Google Scholar 

  3. Bongartz LG, Joles JA, Verhaar MC, Cramer MJ, Goldschmeding R, Tilburgs C, Gaillard CA, Doevendans PA, Braam B (2012) Subtotal nephrectomy plus coronary ligation leads to more pronounced damage in both organs than either nephrectomy or coronary ligation. Am J Physiol Heart Circ Physiol 302:H845–H854

    Article  CAS  PubMed  Google Scholar 

  4. Boulbés DR, Shaiken T, dos Sarbassov D (2011) Endoplasmic reticulum is a main localization site of mTORC2. Biochem Biophys Res Commun 413:46–52. doi:10.1016/j.bbrc.2011.08.034

    Article  PubMed  PubMed Central  Google Scholar 

  5. Byrne CJ, McCafferty K, Kieswich J, Harwood S, Andrikopoulos P, Raftery M, Thiemermann C, Yaqoob MM (2012) Ischemic conditioning protects the uremic heart in a rodent model of myocardial infarction. Circulation 125:1256–1265. doi:10.1161/CIRCULATIONAHA.111.055392

    Article  PubMed  Google Scholar 

  6. Chitalia VC, Shivanna S, Martorell J, Balcells M, Bosch I, Kolandaivelu K, Edelman ER (2013) Uremic serum and solutes increase post-vascular interventional thrombotic risk through altered stability of smooth muscle cell tissue factor. Circulation 127:365–376. doi:10.1161/CIRCULATIONAHA

    Article  CAS  PubMed  Google Scholar 

  7. Clark LE, Khan I (2010) Outcomes in CKD: what we know and what we need to know. Nephron Clin Pract 114:c95–c102. doi:10.1159/000254381

    Article  PubMed  Google Scholar 

  8. Dikow R, Kihm LP, Zeier M, Kapitza J, Törnig J, Amann K, Tiefenbacher C, Ritz E (2004) Increased infarct size in uremic rats: reduced ischemia tolerance? J Am Soc Nephrol 15:1530–1536. doi:10.1097/01.ASN.0000130154.42061.C6

    Article  PubMed  Google Scholar 

  9. Dikow R, Wasserhess C, Zimmerer K, Kihm LP, Schaier M, Schwenger V, Hardt S, Tiefenbacher C, Katus H, Zeier M, Gross LM (2009) Effect of insulin and glucose infusion on myocardial infarction size in uraemic rats. Basic Res Cardiol 104:571–579. doi:10.1007/s00395-009-0018-2

    Article  CAS  PubMed  Google Scholar 

  10. Di Lullo L, House A, Gorini A, Santoboni A, Russo D, Ronco C (2015) Chronic kidney disease and cardiovascular complications. Heart Fail Rev 20:259–272. doi:10.1007/s10741-014-9460-9

    Article  PubMed  Google Scholar 

  11. Ebner M, Sinkovics B, Szczygieł M, Ribeiro DW, Yudushkin I (2017) Localization of mTORC2 activity inside cells. J Cell Biol 216:343–353. doi:10.1083/jcb.201610060

    Article  PubMed  Google Scholar 

  12. Francis J, Weiss RM, Wei SG, Johnson AK, Felder RB (2001) Progression of heart failure after myocardial infarction in the rat. Am J Physiol Regul Integr Comp Physiol 281:R1734–R1745

    CAS  PubMed  Google Scholar 

  13. Garibotto G, Bonanni A, Verzola D (2012) Effect of kidney failure and hemodialysis on protein and amino acid metabolism. Curr Opin Clin Nutr Metab Care 15:78–84. doi:10.1097/MCO.0b013e32834d9df6

    Article  CAS  PubMed  Google Scholar 

  14. Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307:93–98. doi:10.1042/bj3070093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116:674–699. doi:10.1161/CIRCRESAHA.116.305348

    Article  CAS  PubMed  Google Scholar 

  16. Hotta H, Miura T, Miki T, Togashi N, Maeda T, Kim SJ, Tanno M, Yano T, Kuno A, Itoh T, Satoh T, Terashima Y, Ishikawa S, Shimamoto K (2010) Angiotensin II type 1 receptor-mediated upregulation of calcineurin activity underlies impairment of cardioprotective signaling in diabetic hearts. Circ Res 106:129–132. doi:10.1161/CIRCRESAHA.109.205385

    Article  CAS  PubMed  Google Scholar 

  17. Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113:1535–1549. doi:10.1172/JCI19906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koppe L, Pelletier CC, Alix PM, Kalbacher E, Fouque D, Soulage CO, Guebre-Egziabher F (2014) Insulin resistance in chronic kidney disease: new lessons from experimental models. Nephrol Dial Transplant 29:1666–1674. doi:10.1093/ndt/gft435

    Article  CAS  PubMed  Google Scholar 

  19. Kuo YC, Huang KY, Yang CH, Yang YS, Lee WY, Chiang CW (2008) Regulation of phosphorylation of Thr-308 of Akt, cell proliferation, and survival by the B55alpha regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt. J Biol Chem 283:1882–1892. doi:10.1074/jbc.M709585200

    Article  CAS  PubMed  Google Scholar 

  20. Langston RD, Presley R, Flanders WD, McClellan WM (2003) Renal insufficiency and anemia are independent risk factors for death among patients with acute myocardial infarction. Kidney Int 64:1398–1405. doi:10.1046/j.1523-1755.2003.00200.x

    Article  PubMed  Google Scholar 

  21. Miki T, Miura T, Hotta H, Tanno M, Yano T, Sato T, Terashima Y, Takada A, Ishikawa S, Shimamoto K (2009) Endoplasmic reticulum stress in diabetic hearts abolishes erythropoietin-induced myocardial protection by impairment of phospho-glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeability transition. Diabetes 58:2863–2872. doi:10.2337/db09-0158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miki T, Miura T, Yano T, Takahashi A, Sakamoto J, Tanno M, Kobayashi H, Ikeda Y, Nishihara M, Naitoh K, Ohori K, Shimamoto K (2006) Alteration in erythropoietin-induced cardioprotective signaling by postinfarct ventricular remodeling. J Pharmacol Exp Ther 317:68–75. doi:10.1124/jpet.105.095745

    Article  CAS  PubMed  Google Scholar 

  23. Miura T, Tanno M (2012) The mPTP and its regulatory proteins: final common targets of signalling pathways for protection against necrosis. Cardiovasc Res 94:181–189. doi:10.1093/cvr/cvr302

    Article  CAS  PubMed  Google Scholar 

  24. Murphy E, Steenbergen C (2008) Does inhibition of glycogen synthase kinase protect in mice? Circ Res 103:226–228. doi:10.1161/CIRCRESAHA.108.181602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nishihara M, Miura T, Miki T, Sakamoto J, Tanno M, Kobayashi H, Ikeda Y, Ohori K, Takahashi A, Shimamoto K (2006) Erythropoietin affords additional cardioprotection to preconditioned hearts by enhanced phosphorylation of glycogen synthase kinase-3 beta. Am J Physiol Heart Circ Physiol 291:H748–H755. doi:10.1152/ajpheart.00837.2005

    Article  CAS  PubMed  Google Scholar 

  26. Nishizawa K, Yano T, Tanno M, Miki T, Kuno A, Tobisawa T, Ogasawara M, Muratsubaki S, Ohno K, Ishikawa S, Miura T (2016) Chronic treatment with an erythropoietin receptor ligand prevents chronic kidney disease-induced enlargement of myocardial infarct size. Hypertension 68:697–706. doi:10.1161/HYPERTENSIONAHA.116.07480

    Article  CAS  PubMed  Google Scholar 

  27. Ohori K, Miura T, Tanno M, Miki T, Sato T, Ishikawa S, Horio Y, Shimamoto K (2008) Ser9 phosphorylation of mitochondrial GSK-3beta is a primary mechanism of cardiomyocyte protection by erythropoietin against oxidant-induced apoptosis. Am J Physiol Heart Circ Physiol 295:H2079–H2086. doi:10.1152/ajpheart.00092.2008

    Article  CAS  PubMed  Google Scholar 

  28. Risso G, Blaustein M, Pozzi B, Mammi P, Srebrow A (2015) Akt/PKB: one kinase, many modifications. Biochem J 468:203–214. doi:10.1042/BJ20150041

    Article  CAS  PubMed  Google Scholar 

  29. Rodrigues FB, Bruetto RG, Torres US, Otaviano AP, Zanetta DM, Burdmann EA (2010) Effect of kidney disease on acute coronary syndrome. Clin J Am Soc Nephrol 5:1530–1536. doi:10.2215/CJN.01260210

    Article  PubMed  Google Scholar 

  30. Ryu ES, Kim MJ, Shin HS, Jang YH, Choi HS, Jo I, Johnson RJ, Kang DH (2013) Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. Am J Physiol Renal Physiol 304:F471–F480. doi:10.1152/ajprenal.00560

    Article  CAS  PubMed  Google Scholar 

  31. Sciarretta S, Volpe M, Sadoshima J (2014) Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res 114:549–564. doi:10.1161/CIRCRESAHA.114.302022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Semple DJ, Bhandari S, Seymour AM (2012) Uremic cardiomyopathy is characterized by loss of the cardioprotective effects of insulin. Am J Physiol Renal Physiol 303:F1275–F1286. doi:10.1152/ajprenal.00048.2012

    Article  CAS  PubMed  Google Scholar 

  33. Semple D, Smith K, Bhandari S, Seymour AM (2011) Uremic cardiomyopathy and insulin resistance: a critical role for akt? J Am Soc Nephrol 22:207–215. doi:10.1681/ASN.2009090900

    Article  CAS  PubMed  Google Scholar 

  34. Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18. doi:10.1161/CIRCRESAHA.108.186429

    Article  CAS  PubMed  Google Scholar 

  35. Song Y, Yu Q, Zhang J, Huang W, Liu Y, Pei H, Liu J, Sun L, Yang L, Li C, Li Y, Zhang F, Qu Y, Tao L (2014) Increased myocardial ischemia-reperfusion injury in renal failure involves cardiac adiponectin signal deficiency. Am J Physiol Endocrinol Metab 306:E1055–E1064. doi:10.1152/ajpendo.00428.2013

    Article  CAS  PubMed  Google Scholar 

  36. Taylor D, Bhandari S, Seymour AM (2015) Mitochondrial dysfunction in uremic cardiomyopathy. Am J Physiol Renal Physiol 308:F579–F587. doi:10.1152/ajprenal.00442.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Virzì GM, Clementi A, Ronco C (2016) Cellular apoptosis in the cardiorenal axis. Heart Fail Rev 21:177–189. doi:10.1007/s10741-016-9534-y

    Article  PubMed  Google Scholar 

  38. Wright RS, Reeder GS, Herzog CA, Albright RC, Williams BA, Dvorak DL, Miller WL, Murphy JG, Kopecky SL, Jaffe AS (2002) Acute myocardial infarction and renal dysfunction: a high-risk combination. Ann Intern Med 37:563–570. doi:10.7326/0003-4819-137-7-200210010-00

    Article  Google Scholar 

  39. Yano T, Ferlito M, Aponte A, Kuno A, Miura T, Murphy E, Steenbergen C (2014) Pivotal role of mTORC2 and involvement of ribosomal protein S6 in cardioprotective signaling. Circ Res 114:1268–1280. doi:10.1161/CIRCRESAHA.114.303562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yano T, Miki T, Tanno M, Kuno A, Itoh T, Takada A, Sato T, Kouzu H, Shimamoto K, Miura T (2011) Hypertensive hypertrophied myocardium is vulnerable to infarction and refractory to erythropoietin-induced protection. Hypertension 57:110–115. doi:10.1161/HYPERTENSIONAHA.110.158469

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuji Miura.

Ethics declarations

Funding

The present study was supported by Grant-in-aid for Scientific Research (#2646113 and #16K09505) from the Japan Society for the Promotion of Science, Tokyo, Japan and by Grant for Research and Education 2015 from Sapporo Medical University, Sapporo, Japan.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobisawa, T., Yano, T., Tanno, M. et al. Insufficient activation of Akt upon reperfusion because of its novel modification by reduced PP2A-B55α contributes to enlargement of infarct size by chronic kidney disease. Basic Res Cardiol 112, 31 (2017). https://doi.org/10.1007/s00395-017-0621-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-017-0621-6

Keywords

Navigation