Skip to main content

Advertisement

Log in

Metastasis suppressor genes in clinical practice: are they druggable?

  • REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Since the identification of NM23 (now called NME1) as the first metastasis suppressor gene (MSG), a small number of other gene products and non-coding RNAs have been identified that suppress specific parameters of the metastatic cascade, yet which have little or no ability to regulate primary tumor initiation or maintenance. MSG can regulate various pathways or cell biological functions such as those controlling mitogen-activated protein kinase pathway mediators, cell–cell and cell-extracellular matrix protein adhesion, cytoskeletal architecture, G-protein-coupled receptors, apoptosis, and transcriptional complexes. One defining facet of this gene class is that their expression is typically downregulated, not mutated, in metastasis, such that any effective therapeutic intervention would involve their re-expression. This review will address the therapeutic targeting of MSG, once thought to be a daunting task only facilitated by ectopically re-expressing MSG in metastatic cells in vivo. Examples will be cited of attempts to identify actionable oncogenic pathways that might suppress the formation or progression of metastases through the re-expression of specific metastasis suppressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References   

  1. Khan, I., & Steeg, P. S. (2018). Metastasis suppressors: Functional pathways. Lab Investigations, 98, 198–210.

    Article  CAS  Google Scholar 

  2. Shevde, L. A., & Welch, D. R. (2003). Metastasis suppressor pathways–An evolving paradigm. Cancer Letters, 198, 1–20.

    Article  PubMed  CAS  Google Scholar 

  3. Hurst, D. R., & Welch, D. R. (2011). Metastasis suppressor genes at the interface between the environment and tumor cell growth. International Review Cell and Molecular Biology, 286, 107–180.

    Article  CAS  Google Scholar 

  4. Smith, S. C., & Theodorescu, D. (2009). Learning therapeutic lessons from metastasis suppressor proteins. Nature Reviews Cancer, 9, 253–264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sasaki, K., Kurahara, H., Young, E. D., Natsugoe, S., Ijichi, A., Iwakuma, T., & Welch, D. R. (2017). Genome-wide in vivo RNAi screen identifies ITIH5 as a metastasis suppressor in pancreatic cancer. Clinical Experimental Metastasis, 34, 229–239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Gao, H., Chakraborty, G., Lee-Lim, A. P., Mavrakis, K. J., Wendel, H. G., & Giancotti, F. G. (2014). Forward genetic screens in mice uncover mediators and suppressors of metastatic reactivation. Proceedings of the National Academy of Science U. S. A., 111, 16532–16537.

    Article  CAS  Google Scholar 

  7. Su, B., Gao, L., Baranowski, C., Gillard, B., Wang, J., Ransom, R., Ko, H. K., & Gelman, I. H. (2014). A genome-wide RNAi screen identifies FOXO4 as a metastasis-suppressor through counteracting PI3K/AKT signal pathway in prostate cancer. PLoS ONE, 9, e101411.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhou, X., Li, R., Jing, R., Zuo, B., & Zheng, Q. (2020). Genome-wide CRISPR knockout screens identify ADAMTSL3 and PTEN genes as suppressors of HCC proliferation and metastasis, respectively. Journal of Cancer Research and Clinical Oncology, 146, 1509–1521.

    Article  PubMed  CAS  Google Scholar 

  9. Li, C., Jiang, W., Hu, Q., Li, L. C., Dong, L., Chen, R., Zhang, Y., Tang, Y., Thrasher, J. B., Liu, C. B., & Li, B. (2016). Enhancing DPYSL3 gene expression via a promoter-targeted small activating RNA approach suppresses cancer cell motility and metastasis. Oncotarget, 7, 22893–22910.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li, K., Pang, J., Cheng, H., Liu, W. P., Di, J. M., Xiao, H. J., Luo, Y., Zhang, H., Huang, W. T., Chen, M. K., Li, L. Y., Shao, C. K., Feng, Y. H., & Gao, X. (2015). Manipulation of prostate cancer metastasis by locus-specific modification of the CRMP4 promoter region using chimeric TALE DNA methyltransferase and demethylase. Oncotarget, 6, 10030–10044.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Biggs, J., Hersperger, E., Steeg, P. S., Liotta, L. A., & Shearn, A. (1990). A Drosophila gene that is homologous to a mammalian gene associated with tumor metastasis codes for a nucleoside diphosphate kinase. Cell, 63, 933–940.

    Article  PubMed  CAS  Google Scholar 

  12. Lambert, A. W., Pattabiraman, D. R., & Weinberg, R. A. (2017). Emerging biological principles of metastasis. Cell, 168, 670–691.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Boissan, M., & Lacombe, M. L. (2011). Learning about the functions of NME/NM23: Lessons from knockout mice to silencing strategies. Naunyn Schmiedebergs Archives in Pharmacology, 384, 421–431.

    Article  CAS  Google Scholar 

  14. Theroux, S., Pereira, M., Casten, K. S., Burwell, R. D., Yeung, K. C., Sedivy, J. M., & Klysik, J. (2007). Raf kinase inhibitory protein knockout mice: Expression in the brain and olfaction deficit. Brain Research Bulletin, 71, 559–567.

    Article  PubMed  CAS  Google Scholar 

  15. Akakura, S., Huang, C., Nelson, P. J., Foster, B., & Gelman, I. H. (2008). Loss of the SSeCKS/Gravin/AKAP12 gene results in prostatic hyperplasia. Cancer Research, 68, 5096–5103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lee, J. W., Hur, J., Kwon, Y. W., Chae, C. W., Choi, J. I., Hwang, I., Yun, J. Y., Kang, J. A., Choi, Y. E., Kim, Y. H., Lee, S. E., Lee, C., Jo, D. H., Seok, H., Cho, B. S., Baek, S. H., & Kim, H. S. (2021). KAI1(CD82) is a key molecule to control angiogenesis and switch angiogenic milieu to quiescent state. Journal of Hematological Oncology, 14, 148.

    Article  CAS  Google Scholar 

  17. Liu, W. M., & Zhang, X. A. (2006). KAI1/CD82, a tumor metastasis suppressor. Cancer Letters, 240, 183–194.

    Article  PubMed  CAS  Google Scholar 

  18. Asaoka, Y., & Nishina, H. (2010). Diverse physiological functions of MKK4 and MKK7 during early embryogenesis. Journal of Biochemistry, 148, 393–401.

    PubMed  CAS  Google Scholar 

  19. Varfolomeev, E. E., Schuchmann, M., Luria, V., Chiannilkulchai, N., Beckmann, J. S., Mett, I. L., Rebrikov, D., Brodianski, V. M., Kemper, O. C., Kollet, O., Lapidot, T., Soffer, D., Sobe, T., Avraham, K. B., Goncharov, T., Holtmann, H., Lonai, P., & Wallach, D. (1998). Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity, 9, 267–276.

    Article  PubMed  CAS  Google Scholar 

  20. Prabhu, V. V., Siddikuzzaman Grace, V. M., & Guruvayoorappan, C. (2012). Targeting tumor metastasis by regulating Nm23 gene expression. Asian Pacific Journal of Cancer PReviews, 13, 3539–3548.

    Article  Google Scholar 

  21. Robinson, V. L., Hickson, J. A., Vander Griend, D. J., Dubauskas, Z., & Rinker-Schaeffer, C. W. (2003). MKK4 and metastasis suppression: A marriage of signal transduction and metastasis research. Clinical Experimental Metastasis, 20, 25–30.

    Article  PubMed  CAS  Google Scholar 

  22. Yesilkanal, A. E., & Rosner, M. R. (2018). Targeting Raf kinase inhibitory protein regulation and function. Cancers (Basel), 10, 306.

    Article  PubMed  Google Scholar 

  23. Lacombe, M. L., Lamarche, F., De, W. O., Padilla-Benavides, T., Carlson, A., Khan, I., Huna, A., Vacher, S., Calmel, C., Desbourdes, C., Cottet-Rousselle, C., Hininger-Favier, I., Attia, S., Nawrocki-Raby, B., Raingeaud, J., Machon, C., Guitton, J., Le, G. M., Clary, G., … Boissan, M. (2021). The mitochondrially-localized nucleoside diphosphate kinase D (NME4) is a novel metastasis suppressor. BMC Biology, 19, 228–01155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Guo, H., & Xia, B. (2016). Collapsin response mediator protein 4 isoforms (CRMP4a and CRMP4b) have opposite effects on cell proliferation, migration, and invasion in gastric cancer. BMC Cancer, 16, 565.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cetkovic, H., Harcet, M., Roller, M., & Bosnar, M. H. (2018). A survey of metastasis suppressors in Metazoa. Lab Investigations, 98, 554–570.

    Article  CAS  Google Scholar 

  26. Wertheim, G. B., Yang, T. W., Pan, T. C., Ramne, A., Liu, Z., Gardner, H. P., Dugan, K. D., Kristel, P., Kreike, B., van de Vijver, M. J., Cardiff, R. D., Reynolds, C., & Chodosh, L. A. (2009). The Snf1-related kinase, Hunk, is essential for mammary tumor metastasis. Proceedings of the National Academy of Science. U. S. A., 106, 15855–15860.

    Article  Google Scholar 

  27. Allen, M., Svensson, L., Roach, M., Hambor, J., McNeish, J., & Gabel, C. A. (2000). Deficiency of the stress kinase p38alpha results in embryonic lethality: Characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. Journal of Experimental Medicine, 191, 859–870.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hiratsuka, S., Duda, D. G., Huang, Y., Goel, S., Sugiyama, T., Nagasawa, T., Fukumura, D., & Jain, R. K. (2011). C-X-C receptor type 4 promotes metastasis by activating p38 mitogen-activated protein kinase in myeloid differentiation antigen (Gr-1)-positive cells. Proceedings of the National Academy of Science. U. S. A, 108, 302–307.

    Article  CAS  Google Scholar 

  29. Suarez-Cuervo, C., Merrell, M. A., Watson, L., Harris, K. W., Rosenthal, E. L., Vaananen, H. K., & Selander, K. S. (2004). Breast cancer cells with inhibition of p38alpha have decreased MMP-9 activity and exhibit decreased bone metastasis in mice. Clinical Experimental Metastasis, 21, 525–533.

    Article  PubMed  CAS  Google Scholar 

  30. Grave, N., Scheffel, T. B., Cruz, F. F., Rockenbach, L., Goettert, M. I., Laufer, S., & Morrone, F. B. (2022). The functional role of p38 MAPK pathway in malignant brain tumors. Front Pharmacology, 13, 975197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zou, X., & Blank, M. (2017). Targeting p38 MAP kinase signaling in cancer through post-translational modifications. Cancer Letters, 384, 19–26.

    Article  PubMed  CAS  Google Scholar 

  32. Igea, A., & Nebreda, A. R. (2015). The stress kinase p38α as a target for cancer therapy. Cancer Research, 75, 3997–4002.

    Article  PubMed  CAS  Google Scholar 

  33. Koul, H. K., Pal, M., & Koul, S. (2013). Role of p38 MAP kinase signal transduction in solid tumors. Genes & Cancer, 4, 342–359.

    Article  Google Scholar 

  34. Del Barco Barrantes, I., & Nebreda, A. R. (2012). Roles of p38 MAPKs in invasion and metastasis. Biochemistry Society Transactions, 40, 79–84.

    Article  CAS  Google Scholar 

  35. Hartsough, M. T., Morrison, D. K., Salerno, M., Palmieri, D., Ouatas, T., Mair, M., Patrick, J., & Steeg, P. S. (2002). Nm23-H1 metastasis suppressor phosphorylation of kinase suppressor of Ras via a histidine protein kinase pathway. Journal of Biological Chemistry, 277, 32389–32399.

    Article  PubMed  CAS  Google Scholar 

  36. Salerno, M., Palmieri, D., Bouadis, A., Halverson, D., & Steeg, P. S. (2005). Nm23-H1 metastasis suppressor expression level influences the binding properties, stability, and function of the kinase suppressor of Ras1 (KSR1) Erk scaffold in breast carcinoma cells. Molecular Cell Biology, 25, 1379–1388.

    Article  CAS  Google Scholar 

  37. Yu, L., Wang, X., Zhang, W., Khan, E., Lin, C., & Guo, C. (2021). The multiple regulation of metastasis suppressor NM23-H1 in cancer. Life Sciences, 268, 118995.

    Article  PubMed  CAS  Google Scholar 

  38. Lee, H. Y., & Lee, H. (1999). Inhibitory activity of nm23-H1 on invasion and colonization of human prostate carcinoma cells is not mediated by its NDP kinase activity. Cancer Letters, 145, 93–99.

    Article  PubMed  CAS  Google Scholar 

  39. Khan, I., & Steeg, P. S. (2017). The relationship of NM23 (NME) metastasis suppressor histidine phosphorylation to its nucleoside diphosphate kinase, histidine protein kinase and motility suppression activities. Oncotarget, 9, 10185–10202.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang, Q., McCorkle, J. R., Novak, M., Yang, M., & Kaetzel, D. M. (2011). Metastasis suppressor function of NM23-H1 requires its 3’-5’ exonuclease activity. International Journal of Cancer, 128, 40–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Khan, I., Gril, B., Hoshino, A., Yang, H. H., Lee, M. P., Difilippantonio, S., Lyden, D. C., & Steeg, P. S. (2022). Metastasis suppressor NME1 in exosomes or liposomes conveys motility and migration inhibition in breast cancer model systems. Clinical Experimental Metastasis., 39, 815–831.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Mátyási, B., Farkas, Z., Kopper, L., Sebestyén, A., Boissan, M., Mehta, A., & Takács-Vellai, K. (2020). The function of NM23-H1/NME1 and its homologs in major processes linked to metastasis. Pathology & Oncology Research, 26, 49–61.

    Article  Google Scholar 

  43. Pamidimukkala, N., Puts, G. S., Kathryn, L. M., Snyder, D., Dabernat, S., De Fabo, E. C., Noonan, F. P., Slominski, A., Merlino, G., & Kaetzel, D. M. (2021). Nme1 and Nme2 genes exert metastasis-suppressor activities in a genetically engineered mouse model of UV-induced melanoma. British Journal of Cancer, 124, 161–165.

    Article  PubMed  CAS  Google Scholar 

  44. Trakul, N., Menard, R. E., Schade, G. R., Qian, Z., & Rosner, M. R. (2005). Raf kinase inhibitory protein regulates Raf-1 but not B-Raf kinase activation. Journal of Biological Chemistry, 280, 24931–24940.

    Article  PubMed  CAS  Google Scholar 

  45. Figy, C., Guo, A., Fernando, V. R., Furuta, S., Al-Mulla, F., & Yeung, K. C. (2023). Changes in expression of tumor suppressor gene RKIP impact how cancers interact with their complex environment. Cancers (Basel), 15, 958.

    Article  PubMed  CAS  Google Scholar 

  46. Ahmed, M., Lai, T. H., Kim, W., & Kim, D. R. (2021). A functional network model of the metastasis suppressor PEBP1/RKIP and its regulators in breast cancer cells. Cancers (Basel), 13, 6098.

    Article  PubMed  CAS  Google Scholar 

  47. Aguirre-Ghiso, J. A. (2018). How dormant cancer persists and reawakens. Science, 361, 1314–1315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Remy, G., Risco, A. M., Iñesta-Vaquera, F. A., González-Terán, B., Sabio, G., Davis, R. J., & Cuenda, A. (2010). Differential activation of p38MAPK isoforms by MKK6 and MKK3. Cell Signaling, 22, 660–667.

    Article  CAS  Google Scholar 

  49. Hickson, J. A., Huo, D., Vander Griend, D. J., Lin, A., Rinker-Schaeffer, C. W., & Yamada, S. D. (2006). The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma. Cancer Research, 66, 2264–2270.

    Article  PubMed  CAS  Google Scholar 

  50. Vander Griend, D. J., Kocherginsky, M., Hickson, J. A., Stadler, W. M., Lin, A., & Rinker-Schaeffer, C. W. (2005). Suppression of metastatic colonization by the context-dependent activation of the c-Jun NH2-terminal kinase kinases JNKK1/MKK4 and MKK7. Cancer Research, 65, 10984–10991.

    Article  PubMed  CAS  Google Scholar 

  51. Dong, Y. Q., Lu, C. W., Zhang, L., Yang, J., Hameed, W., & Chen, W. (2015). Toll-like receptor 4 signaling promotes invasion of hepatocellular carcinoma cells through MKK4/JNK pathway. Molecular Immunology, 68, 671–683.

    Article  PubMed  CAS  Google Scholar 

  52. Wang, P. N., Huang, J., Duan, Y. H., Zhou, J. M., Huang, P. Z., Fan, X. J., Huang, Y., Wang, L., Liu, H. L., Wang, J. P., & Huang, M. J. (2017). Downregulation of phosphorylated MKK4 is associated with a poor prognosis in colorectal cancer patients. Oncotarget, 8, 34352–34361.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Odintsova, E., Sugiura, T., & Berditchevski, F. (2000). Attenuation of EGF receptor signaling by a metastasis suppressor, the tetraspanin CD82/KAI-1. Current Biology, 10, 1009–1012.

    Article  PubMed  CAS  Google Scholar 

  54. Bienstock, R. J., & Barrett, J. C. (2001). KAI1, a prostate metastasis suppressor: Prediction of solvated structure and interactions with binding partners; integrins, cadherins, and cell-surface receptor proteins. Molecular Carcinogenesis, 32, 139–153.

    Article  PubMed  CAS  Google Scholar 

  55. Ordas, L., Costa, L., Lozano, A., Chevillard, C., Calovoulos, A., Kantar, D., Fernandez, L., Chauvin, L., Dosset, P., Doucet, C., Heron-Milhavet, L., Odintsova, E., Berditchevski, F., Milhiet, P. E., & Bénistant, C. (2021). Mechanical control of cell migration by the metastasis suppressor tetraspanin CD82/KAI1. Cells, 10, 1545.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Prabhu, V. V., & Devaraj, S. N. (2017). KAI1/CD82, Metastasis suppressor gene as a therapeutic target for non-small-cell lung carcinoma. Journal of Environmental Pathology, Toxicology and Oncology, 36, 269–275.

    Article  PubMed  Google Scholar 

  57. Jeanes, A., Gottardi, C. J., & Yap, A. S. (2008). Cadherins and cancer: How does cadherin dysfunction promote tumor progression? Oncogene, 27, 6920–6929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hu, Y., Dai, M., Zheng, Y., Wu, J., Yu, B., Zhang, H., Kong, W., Wu, H., & Yu, X. (2018). Epigenetic suppression of E-cadherin expression by Snail2 during the metastasis of colorectal cancer. Clinical Epigenetics, 10, 154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Hazan, R. B., Phillips, G. R., Qiao, R. F., Norton, L., & Aaronson, S. A. (2000). Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. Journal of Cell Biology, 148, 779–790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Hulit, J., Suyama, K., Chung, S., Keren, R., Agiostratidou, G., Shan, W., Dong, X., Williams, T. M., Lisanti, M. P., Knudsen, K., & Hazan, R. B. (2007). N-cadherin signaling potentiates mammary tumor metastasis via enhanced extracellular signal-regulated kinase activation. Cancer Research, 67, 3106–3116.

    Article  PubMed  CAS  Google Scholar 

  61. Chung, S., Yao, J., Suyama, K., Bajaj, S., Qian, X., Loudig, O. D., Eugenin, E. A., Phillips, G. R., & Hazan, R. B. (2013). N-cadherin regulates mammary tumor cell migration through Akt3 suppression. Oncogene, 32, 422–430.

    Article  PubMed  CAS  Google Scholar 

  62. Qian, X., Anzovino, A., Kim, S., Suyama, K., Yao, J., Hulit, J., Agiostratidou, G., Chandiramani, N., McDaid, H. M., Nagi, C., Cohen, H. W., Phillips, G. R., Norton, L., & Hazan, R. B. (2014). N-cadherin/FGFR promotes metastasis through epithelial-to-mesenchymal transition and stem/progenitor cell-like properties. Oncogene, 33, 3411–3421.

    Article  PubMed  CAS  Google Scholar 

  63. Kashima, T., Nakamura, K., Kawaguchi, J., Takanashi, M., Ishida, T., Aburatani, H., Kudo, A., Fukayama, M., & Grigoriadis, A. E. (2003). Overexpression of cadherins suppresses pulmonary metastasis of osteosarcoma in vivo. International Journal of Cancer, 104, 147–154.

    Article  PubMed  CAS  Google Scholar 

  64. Li, Y., Chao, F., Huang, B., Liu, D., Kim, J., & Huang, S. (2014). HOXC8 promotes breast tumorigenesis by transcriptionally facilitating cadherin-11 expression. Oncotarget, 5, 2596–2607.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Von, B. C., Oliveira-Ferrer, L., Lüning, T., Trillsch, F., Mahner, S., & Milde-Langosch, K. (2015). Cadherin-11 mRNA and protein expression in ovarian tumors of different malignancy: No evidence of oncogenic or tumor-suppressive function. Molecular Clinical Oncology, 3, 1067–1072.

    Article  Google Scholar 

  66. Satriyo, P. B., Bamodu, O. A., Chen, J. H., Aryandono, T., Haryana, S. M., Yeh, C. T., & Chao, T. Y. (2019). Cadherin 11 Inhibition downregulates b-catenin, deactivates the canonical WNT signalling pathway and suppresses the cancer stem cell-like phenotype of triple negative breast cancer. Journal of Clinical Medicine, 8, 148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Chen, J. H., Huang, W. C., Bamodu, O. A., Chang, P. M., Chao, T. Y., & Huang, T. H. (2019). Monospecific antibody targeting of CDH11 inhibits epithelial-to-mesenchymal transition and represses cancer stem cell-like phenotype by up-regulating miR-335 in metastatic breast cancer, in vitro and in vivo. BMC Cancer, 19, 634–5811.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ablain, J., Al, M. A., Rothschild, H., Prasad, M., Aires, S., Yang, S., Dokukin, M. E., Xu, S., Dang, M., Sokolov, I., Lian, C. G., & Zon, L. I. (2022). Loss of NECTIN1 triggers melanoma dissemination upon local IGF1 depletion. Nature Genetics, 54, 1839–1852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Martin, T. A., Lane, J., Harrison, G. M., & Jiang, W. G. (2013). The expression of the Nectin complex in human breast cancer and the role of Nectin-3 in the control of tight junctions during metastasis. PLoS ONE, 8, e82696.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kallakury, B. V., Yang, F., Figge, J., Smith, K. E., Kausik, S. J., Tacy, N. J., Fisher, H. A., Kaufman, R., Figge, H., & Ross, J. S. (1996). Decreased levels of CD44 protein and mRNA in prostate carcinoma. Correlation with tumor grade and ploidy, Cancer, 78, 1461–1469.

    PubMed  CAS  Google Scholar 

  71. Ross, J. S., del Rosario, A. D., Bui, H. X., Kallakury, B. V., Okby, N. T., & Figge, J. (1996). Expression of the CD44 cell adhesion molecule in urinary bladder transitional cell carcinoma. Modern Pathology, 9, 854–860.

    PubMed  CAS  Google Scholar 

  72. Gvozdenovic, A., Arlt, M. J., Campanile, C., Brennecke, P., Husmann, K., Born, W., Muff, R., & Fuchs, B. (2013). Silencing of CD44 gene expression in human 143-B osteosarcoma cells promotes metastasis of intratibial tumors in SCID mice. PLoS ONE, 8, e60329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Rudy, W., Hofmann, M., Schwartz-Albiez, R., Zöller, M., Heider, K. H., Ponta, H., & Herrlich, P. (1993). The two major CD44 proteins expressed on a metastatic rat tumor cell line are derived from different splice variants: each one individually suffices to confer metastatic behavior. Cancer Research, 53, 1262–1268.

    PubMed  CAS  Google Scholar 

  74. Hassn, M. M., Syafruddin, S. E., Mohtar, M. A., & Syahir, A. (2021). CD44: A multifunctional mediator of cancer progression. Biomolecules, 11, 1850.

    Article  Google Scholar 

  75. Ma, L., Dong, L., & Chang, P. (2019). CD44v6 engages in colorectal cancer progression. Cell Death & Disease, 10, 30.

    Article  CAS  Google Scholar 

  76. Gao, A. C., Lou, W., Sleeman, J. P., & Isaacs, J. T. (1998). Metastasis suppression by the standard CD44 isoform does not require the binding of prostate cancer cells to hyaluronate. Cancer Research, 58, 2350–2352.

    PubMed  CAS  Google Scholar 

  77. Ahmed, M., Sottnik, J. L., Dancik, G. M., Sahu, D., Hansel, D. E., Theodorescu, D., & Schwartz, M. A. (2016). An osteopontin/CD44 axis in RhoGDI2-mediated metastasis suppression. Cancer Cell, 30, 432–443.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Prochazka, L., Tesarik, R., & Turanek, J. (2014). Regulation of alternative splicing of CD44 in cancer. Cell Signaling, 26, 2234–2239.

    Article  CAS  Google Scholar 

  79. Sakuma, K., Sasaki, E., Kimura, K., Komori, K., Shimizu, Y., Yatabe, Y., & Aoki, M. (2018). HNRNPLL, a newly identified colorectal cancer metastasis suppressor, modulates alternative splicing of CD44 during epithelial-mesenchymal transition. Gut, 67, 1103–1111.

    Article  PubMed  CAS  Google Scholar 

  80. Sun, J., Zhang, D., Bae, D. H., Sahni, S., Jansson, P., Zheng, Y., Zhao, Q., Yue, F., Zheng, M., Kovacevic, Z., & Richardson, D. R. (2013). Metastasis suppressor, NDRG1, mediates its activity through signaling pathways and molecular motors. Carcinogenesis, 34, 1943–1954.

    Article  PubMed  CAS  Google Scholar 

  81. Park, K. C., Paluncic, J., Kovacevic, Z., & Richardson, D. R. (2020). Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer. Free Radical Biology and Medicine, 157, 154–175.

    Article  PubMed  CAS  Google Scholar 

  82. Wangpu, X., Yang, X., Zhao, J., Lu, J., Guan, S., Lu, J., Kovacevic, Z., Liu, W., Mi, L., Jin, R., Sun, J., Yue, F., Ma, J., Lu, A., Richardson, D. R., Wang, L., & Zheng, M. (2015). The metastasis suppressor, NDRG1, inhibits “stemness” of colorectal cancer via down-regulation of nuclear b-catenin and CD44. Oncotarget, 6, 33893–33911.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ohtaki, T., Shintani, Y., Honda, S., Matsumoto, H., Hori, A., Kanehashi, K., Terao, Y., Kumano, S., Takatsu, Y., Masuda, Y., Ishibashi, Y., Watanabe, T., Asada, M., Yamada, T., Suenaga, M., Kitada, C., Usuki, S., Kurokawa, T., Onda, H., … Fujino, M. (2001). Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature, 411, 613–617.

    Article  PubMed  CAS  Google Scholar 

  84. McNally, L. R., Welch, D. R., Beck, B. H., Stafford, L. J., Long, J. W., Sellers, J. C., Huang, Z. Q., Grizzle, W. E., Stockard, C. R., Nash, K. T., & Buchsbaum, D. J. (2010). KISS1 over-expression suppresses metastasis of pancreatic adenocarcinoma in a xenograft mouse model. Clinical Experimental Metastasis, 27, 591–600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Harihar, S., & Welch, D. R. (2023). KISS1 metastasis suppressor in tumor dormancy: A potential therapeutic target for metastatic cancers? Cancer Metastasis Review, 42, 183–196.

    Article  CAS  Google Scholar 

  86. Nash, K. T., Phadke, P. A., Navenot, J. M., Hurst, D. R., Accavitti-Loper, M. A., Sztul, E., Vaidya, K. S., Frost, A. R., Kappes, J. C., Peiper, S. C., & Welch, D. R. (2007). Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. Journal of the National Cancer Institute, 99, 309–321.

    Article  PubMed  CAS  Google Scholar 

  87. Navenot, J. M., Fujii, N., & Peiper, S. C. (2009). Activation of Rho and Rho-associated kinase by GPR54 and KiSS1 metastasis suppressor gene product induces changes of cell morphology and contributes to apoptosis. Molecular Pharmacology, 75, 1300–1306.

    Article  PubMed  CAS  Google Scholar 

  88. Kaverina, N., Borovjagin, A. V., Kadagidze, Z., Baryshnikov, A., Baryshnikova, M., Malin, D., Ghosh, D., Shah, N., Welch, D. R., Gabikian, P., Karseladze, A., Cobbs, C., & Ulasov, I. V. (2017). Astrocytes promote progression of breast cancer metastases to the brain via a KISS1-mediated autophagy. Autophagy, 13, 1905–1923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Ly, T., Harihar, S., & Welch, D. R. (2020). KISS1 in metastatic cancer research and treatment: Potential and paradoxes. Cancer Metastasis Review, 39, 739–754.

    Article  Google Scholar 

  90. Simon, C., Soga, T., & Parhar, I. (2023). Kisspeptin-10 mitigates a-synuclein-mediated mitochondrial apoptosis in SH-SY5Y-derived neurons via a kisspeptin receptor-independent manner. International Journal of Molecular Science, 24, 6056.

    Article  CAS  Google Scholar 

  91. LaTulippe, E., Satagopan, J., Smith, A., Scher, H., Scardino, P., Reuter, V., & Gerald, W. L. (2002). Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Research, 62, 4499–4506.

    PubMed  CAS  Google Scholar 

  92. Singh, L. S., Berk, M., Oates, R., Zhao, Z., Tan, H., Jiang, Y., Zhou, A., Kirmani, K., Steinmetz, R., Lindner, D., & Xu, Y. (2007). Ovarian cancer G protein-coupled receptor 1, a new metastasis suppressor gene in prostate cancer. Journal of the National Cancer Institute, 99, 1313–1327.

    Article  PubMed  CAS  Google Scholar 

  93. Li, H., Wang, D., Singh, L. S., Berk, M., Tan, H., Zhao, Z., Steinmetz, R., Kirmani, K., Wei, G., & Xu, Y. (2009). Abnormalities in osteoclastogenesis and decreased tumorigenesis in mice deficient for ovarian cancer G protein-coupled receptor 1. PLoS ONE, 4, e5705.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Yan, L., Singh, L. S., Zhang, L., & Xu, Y. (2014). Role of OGR1 in myeloid-derived cells in prostate cancer. Oncogene, 33, 157–164.

    Article  PubMed  CAS  Google Scholar 

  95. Ingber, D. E. (1997). Tensegrity: The architectural basis of cellular mechanotransduction. Annual Reviews in Physiology, 59, 575–599.

    Article  CAS  Google Scholar 

  96. Orgaz, J. L., Herraiz, C., & Sanz-Moreno, V. (2014). Rho GTPases modulate malignant transformation of tumor cells. Small GTPases, 5, e29019.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Jansen, S., Gosens, R., Wieland, T., & Schmidt, M. (2017). Paving the Rho in cancer metastasis: Rho GTPases and beyond. Pharmacology & Therapeutics, 183, 1–21.

    Article  Google Scholar 

  98. Reiner, D. J., & Lundquist, E. A. (2018). Small GTPases. WormBook, 2018, 1–65.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Moissoglu, K., McRoberts, K. S., Meier, J. A., Theodorescu, D., & Schwartz, M. A. (2009). Rho GDP dissociation inhibitor 2 suppresses metastasis via unconventional regulation of RhoGTPases. Cancer Research, 69, 2838–2844.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Huang, W., Liu, J., Feng, X., Chen, H., Zeng, L., Huang, G., Liu, W., Wang, L., Jia, W., Chen, J., & Ren, C. (2015). DLC-1 induces mitochondrial apoptosis and epithelial mesenchymal transition arrest in nasopharyngeal carcinoma by targeting EGFR/Akt/NF-kB pathway. Medical Oncology, 32, 115–0564.

    Article  PubMed  CAS  Google Scholar 

  101. Liao, Y. C., Shih, Y. P., & Lo, S. H. (2008). Mutations in the focal adhesion targeting region of deleted in liver cancer-1 attenuate their expression and function. Cancer Research, 68, 7718–7722.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Popescu, N. C., & Goodison, S. (2014). Deleted in liver cancer-1 (DLC1): An emerging metastasis suppressor gene. Molecular Diagnostics and Therapeutics, 18, 293–302.

    CAS  Google Scholar 

  103. Zhou, X., Thorgeirsson, S. S., & Popescu, N. C. (2004). Restoration of DLC-1 gene expression induces apoptosis and inhibits both cell growth and tumorigenicity in human hepatocellular carcinoma cells. Oncogene, 23, 1308–1313.

    Article  PubMed  CAS  Google Scholar 

  104. Yuan, B. Z., Zhou, X., Durkin, M. E., Zimonjic, D. B., Gumundsdottir, K., Eyfjord, J. E., Thorgeirsson, S. S., & Popescu, N. C. (2003). DLC-1 gene inhibits human breast cancer cell growth and in vivo tumorigenicity. Oncogene, 22, 445–450.

    Article  PubMed  CAS  Google Scholar 

  105. Yuan, B. Z., Jefferson, A. M., Baldwin, K. T., Thorgeirsson, S. S., Popescu, N. C., & Reynolds, S. H. (2004). DLC-1 operates as a tumor suppressor gene in human non-small cell lung carcinomas. Oncogene, 23, 1405–1411.

    Article  PubMed  CAS  Google Scholar 

  106. Liao, Y. C., & Lo, S. H. (2008). Deleted in liver cancer-1 (DLC-1): A tumor suppressor not just for liver. International Journal of Biochemistry & Cell Biology, 40, 843–847.

    Article  CAS  Google Scholar 

  107. Harding, M. A., & Theodorescu, D. (2007). RhoGDI2: A new metastasis suppressor gene: Discovery and clinical translation. Urologic Oncology, 25, 401–406.

    Article  PubMed  CAS  Google Scholar 

  108. Papadas, A., Arauz, G., Cicala, A., Wiesner, J., & Asimakopoulos, F. (2020). Versican and versican-matrikines in cancer progression, inflammation, and immunity. Journal of Histochemistry and Cytochemistry, 68, 871–885.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Xie, F., Ye, L., Ta, M., Zhang, L., & Jiang, W. G. (2011). MTSS1: A multifunctional protein and its role in cancer invasion and metastasis. Frontiers in Biosciences (Scholars Ed), 3, 621–631.

    Article  Google Scholar 

  110. Liu, K., Wang, G., Ding, H., Chen, Y., Yu, G., & Wang, J. (2010). Downregulation of metastasis suppressor 1(MTSS1) is associated with nodal metastasis and poor outcome in Chinese patients with gastric cancer. BMC Cancer, 10, 428.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Shi, W., Hasimu, G., Wang, Y., Li, N., Chen, M., & Zhang, H. (2015). MTSS1 is an independent prognostic biomarker for survival in intrahepatic cholangiocarcinoma patients. American Journal of Translational Research, 7, 1974–1983.

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Zeleniak, A. E., Huang, W., Brinkman, M. K., Fishel, M. L., & Hill, R. (2017). Loss of MTSS1 results in increased metastatic potential in pancreatic cancer. Oncotarget, 8, 16473–16487.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Du, P., Ye, L., Ruge, F., Yang, Y., & Jiang, W. G. (2011). Metastasis suppressor-1, MTSS1, acts as a putative tumour suppressor in human bladder cancer. Anticancer Research, 31, 3205–3212.

    PubMed  CAS  Google Scholar 

  114. Kayser, G., Csanadi, A., Kakanou, S., Prasse, A., Kassem, A., Stickeler, E., Passlick, B., & Zur, H. A. (2015). Downregulation of MTSS1 expression is an independent prognosticator in squamous cell carcinoma of the lung. British Journal of Cancer, 112, 866–873.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Schemionek, M., Kharabi, M. B., Klaile, Y., Krug, U., Hebestreit, K., Schubert, C., Dugas, M., Büchner, T., Wörmann, B., Hiddemann, W., Berdel, W. E., Brümmendorf, T. H., Müller-Tidow, C., & Koschmieder, S. (2015). Identification of the adapter molecule mtss1 as a potential oncogene-specific tumor suppressor in acute myeloid leukemia. PLoS ONE, 10, e0125783.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Mertz, K. D., Pathria, G., Wagner, C., Saarikangas, J., Sboner, A., Romanov, J., Gschaider, M., Lenz, F., Neumann, F., Schreiner, W., Nemethova, M., Glassmann, A., Lappalainen, P., Stingl, G., Small, J. V., Fink, D., Chin, L., & Wagner, S. N. (2014). MTSS1 is a metastasis driver in a subset of human melanomas. Nature Communications, 5, 3465.

    Article  PubMed  Google Scholar 

  117. Gelman, I. H. (2012). Suppression of tumor and metastasis progression through the scaffolding functions of SSeCKS/Gravin/AKAP12. Cancer Metastasis Review, 31, 493–500.

    Article  CAS  Google Scholar 

  118. Su, B., Gao, L., Meng, F., Guo, L. W., Rothschild, J., & Gelman, I. H. (2013). Adhesion-mediated cytoskeletal remodeling is controlled by the direct scaffolding of Src from FAK complexes to lipid rafts by SSeCKS/AKAP12. Oncogene, 32, 2016–2026.

    Article  PubMed  CAS  Google Scholar 

  119. Gelman, I. H., & Gao, L. (2006). The SSeCKS/Gravin/AKAP12 metastasis suppressor inhibits podosome formation via RhoA- and Cdc42-dependent pathways. Molecular Cancer Research, 4, 151–158.

    Article  PubMed  CAS  Google Scholar 

  120. Guo, L. W., Gao, L., Rothschild, J., Su, B., & Gelman, I. H. (2011). Control of protein kinase C activity, phorbol ester-induced cytoskeletal remodeling, and cell survival signals by the scaffolding protein SSeCKS/GRAVIN/AKAP12. Journal of Biological Chemistry, 286, 38356–38366.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Ko, H. K., Guo, L. W., Su, B., Gao, L., & Gelman, I. H. (2014). Suppression of chemotaxis by SSeCKS via scaffolding of phosphoinositol phosphates and the recruitment of the Cdc42 GEF, Frabin, to the leading edge. PLoS ONE, 9, e111534.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Drake, J. M., Graham, N. A., Stoyanova, T., Sedghi, A., Goldstein, A. S., Cai, H., Smith, D. A., Zhang, H., Komisopoulou, E., Huang, J., Graeber, T. G., & Witte, O. N. (2012). Oncogene-specific activation of tyrosine kinase networks during prostate cancer progression. Proceedings of the National Academy of Science. U. S. A., 109, 1643–1648.

    Article  CAS  Google Scholar 

  123. Xia, W., Unger, P., Miller, L., Nelson, J., & Gelman, I. H. (2001). The Src-suppressed C kinase substrate, SSeCKS, is a potential metastasis inhibitor in prostate cancer. Cancer Research, 61, 5644–5651.

    PubMed  CAS  Google Scholar 

  124. Su, B., Zheng, Q., Vaughan, M. M., Bu, Y., & Gelman, I. H. (2006). SSeCKS metastasis-suppressing activity in MatLyLu prostate cancer cells correlates with VEGF inhibition. Cancer Research, 66, 5599–5607.

    Article  PubMed  CAS  Google Scholar 

  125. Akakura, S., Bouchard, R., Bshara, W., Morrison, C., & Gelman, I. H. (2010). Carcinogen-induced squamous papillomas and oncogenic progression in the absence of the SSeCKS/AKAP12 metastasis suppressor correlates with FAK upregulation. International Journal of Cancer, 129, 2025–2031.

    Article  Google Scholar 

  126. Muramatsu, M., Gao, L., Peresie, J., Balderman, B., Akakura, S., & Gelman, I. H. (2017). SSeCKS/Akap12 scaffolding functions suppress B16F10-induced peritoneal metastasis by attenuating Cxcl9/10 secretion by resident myofibroblasts. Oncotarget, 8, 70281–70298.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Muramatsu, M., Akakura, S., Gao, L., Peresie, J., Balderman, B., & Gelman, I. H. (2018). SSeCKS/Akap12 suppresses metastatic melanoma lung colonization by attenuating Src-mediated pre-metastatic niche crosstalk. Oncotarget, 9, 33515–33527.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kimura, K., Markowski, M., Bowen, C., & Gelmann, E. P. (2001). Androgen blocks apoptosis of hormone-dependent prostate cancer cells. Cancer Research, 61, 5611–5618.

    PubMed  CAS  Google Scholar 

  129. Schoenfeld, N., Bauer, M. K., & Grimm, S. (2004). The metastasis suppressor gene C33/CD82/KAI1 induces apoptosis through reactive oxygen intermediates. FASEB Journal, 18, 158–160.

    Article  PubMed  CAS  Google Scholar 

  130. Yin, Y., Tang, L., & Shi, L. (2017). The metastasis suppressor gene KISS-1 regulates osteosarcoma apoptosis and autophagy processes. Molecular Medicine Reports, 15, 1286–1290.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Guo, Z., Wang, Y., Yang, J., Zhong, J., Liu, X., & Xu, M. (2017). KAI1 overexpression promotes apoptosis and inhibits proliferation, cell cycle, migration, and invasion in nasopharyngeal carcinoma cells. American Journal of Otolaryngology, 38, 511–517.

    Article  PubMed  Google Scholar 

  132. Li, L., Wang, Z., Lu, T., Li, Y., Pan, M., Yu, D., & Hu, G. (2021). Expression and functional relevance of ANXA1 in hypopharyngeal carcinoma with lymph node metastasis. Oncogy Targets & Therapeutics, 14, 1387–1399.

    Article  Google Scholar 

  133. Zhang, H. M., Qiao, Q. D., Xie, H. F., & Wei, J. X. (2017). Breast cancer metastasis suppressor 1 (BRMS1) suppresses prostate cancer progression by inducing apoptosis and regulating invasion. European Review of Medical and Pharmacological Science, 21, 68–75.

    Google Scholar 

  134. You, J., He, X., Ding, H., & Zhang, T. (2015). BRMS1 regulates apoptosis in non-small cell lung cancer cells. Cell Biochemistry & Biophysics, 71, 465–472.

    Article  CAS  Google Scholar 

  135. Navenot, J. M., Fujii, N., & Peiper, S. C. (2009). KiSS1 metastasis suppressor gene product induces suppression of tyrosine kinase receptor signaling to Akt, tumor necrosis factor family ligand expression, and apoptosis. Molecular Pharmacology, 75, 1074–1083.

    Article  PubMed  CAS  Google Scholar 

  136. Ozturk, S., Papageorgis, P., Wong, C. K., Lambert, A. W., Abdolmaleky, H. M., Thiagalingam, A., Cohen, H. T., & Thiagalingam, S. (2016). SDPR functions as a metastasis suppressor in breast cancer by promoting apoptosis. Proceedings of the National Academy of Science. U. S. A., 113, 638–643.

    Article  CAS  Google Scholar 

  137. Zimmermann, R. C., & Welch, D. R. (2020). BRMS1: A multifunctional signaling molecule in metastasis. Cancer Metastasis Review, 39, 755–768.

    Article  CAS  Google Scholar 

  138. Lewis, M. J., Liu, J., Libby, E. F., Lee, M., Crawford, N. P., & Hurst, D. R. (2016). SIN3A and SIN3B differentially regulate breast cancer metastasis. Oncotarget, 7, 78713–78725.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Liu, Y., Mayo, M. W., Nagji, A. S., Hall, E. H., Shock, L. S., Xiao, A., Stelow, E. B., & Jones, D. R. (2013). BRMS1 suppresses lung cancer metastases through an E3 ligase function on histone acetyltransferase p300. Cancer Research, 73, 1308–1317.

    Article  PubMed  CAS  Google Scholar 

  140. Hurst, D. R., Xie, Y., Thomas, J. W., Liu, J., Edmonds, M. D., Stewart, M. D., & Welch, D. R. (2013). The C-terminal putative nuclear localization sequence of breast cancer metastasis suppressor 1, BRMS1, is necessary for metastasis suppression. PLoS ONE, 8, e55966.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Gong, C., Qu, S., Lv, X. B., Liu, B., Tan, W., Nie, Y., Su, F., Liu, Q., Yao, H., & Song, E. (2014). BRMS1L suppresses breast cancer metastasis by inducing epigenetic silence of FZD10. Nature Communications, 5, 5406.

    Article  PubMed  Google Scholar 

  142. Koyama, R., Tamura, M., Nakagaki, T., Ohashi, T., Idogawa, M., Suzuki, H., Tokino, T., & Sasaki, Y. (2017). Identification and characterization of a metastatic suppressor BRMS1L as a target gene of p53. Cancer Sciences, 108, 2413–2421.

    Article  CAS  Google Scholar 

  143. Cao, P., Zhao, S., Sun, Z., Jiang, N., Shang, Y., Wang, Y., Gu, J., & Li, S. (2018). BRMS1L suppresses ovarian cancer metastasis via inhibition of the b-catenin-wnt pathway. Experimental Cell Research, 371, 214–221.

    Article  PubMed  CAS  Google Scholar 

  144. Lv, J., Yang, H., Wang, X., He, R., Ding, L., & Sun, X. (2018). Decreased BRMS1L expression is correlated with glioma grade and predicts poor survival in glioblastoma via an invasive phenotype. Cancer Biomarkers, 22, 311–316.

    Article  CAS  Google Scholar 

  145. Phadke, P. A., Vaidya, K. S., Nash, K. T., Hurst, D. R., & Welch, D. R. (2008). BRMS1 suppresses breast cancer experimental metastasis to multiple organs by inhibiting several steps of the metastatic process. American Journal of Pathology, 172, 809–817.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Petri, B. J., & Klinge, C. M. (2020). Regulation of breast cancer metastasis signaling by miRNAs. Cancer Metastasis Review, 39, 837–886.

    Article  CAS  Google Scholar 

  147. Jahangiri, L., & Ishola, T. (2022). Dormancy in breast cancer, the role of autophagy, lncRNAs, miRNAs and exosomes. International Journal of Molecular Science, 23, 5271.

    Article  CAS  Google Scholar 

  148. Ma, L., & Weinberg, R. A. (2008). MicroRNAs in malignant progression. Cell Cycle, 7, 570–572.

    Article  PubMed  CAS  Google Scholar 

  149. Le, X. F., Merchant, O., Bast, R. C., & Calin, G. A. (2010). The roles of MicroRNAs in the cancer invasion-metastasis cascade. Cancer Microenvironment, 3, 137–147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Chan, S. H., & Wang, L. H. (2015). Regulation of cancer metastasis by microRNAs. Journal of Biomedical Science, 22, 9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Zhang, Y., Zhao, L., Bi, Y., Zhao, J., Gao, C., Si, X., Dai, H., Asmamaw, M. D., Zhang, Q., Chen, W., & Liu, H. (2023). The role of lncRNAs and exosomal lncRNAs in cancer metastasis. Biomedical Pharmacotherapeutics, 165, 115207.

    Article  CAS  Google Scholar 

  152. Ahmad, M., Weiswald, L. B., Poulain, L., Denoyelle, C., & Meryet-Figuiere, M. (2023). Involvement of lncRNAs in cancer cells migration, invasion and metastasis: Cytoskeleton and ECM crosstalk. Journal of Experimental & Clinical Cancer Research, 42, 173.

    Article  CAS  Google Scholar 

  153. Li, Y., Fang, Z., Ge, S., Li, J., Qu, L., Shi, X., Zhang, W., Sun, Y., Ren, S., & Wang, L. (2023). Long non-coding RNA ENST00000503625 is a potential prognostic biomarker and metastasis suppressor gene in prostate cancer. Journal of Cancer Research & Clinical Oncology, 149, 7305–7317.

    Article  CAS  Google Scholar 

  154. Lu, K., Feng, F., Yang, Y., Liu, K., Duan, J., Liu, H., Yang, J., Wu, M., Liu, C., & Chang, Y. (2020). High-throughput screening identified miR-7-2-3p and miR-29c-3p as metastasis suppressors in gallbladder carcinoma. Journal of Gastroenterology, 55, 51–66.

    Article  PubMed  Google Scholar 

  155. Yin, X., Chai, Z., Sun, X., Chen, J., Wu, X., Yang, L., Zhou, X., & Liu, F. (2020). Overexpression of microRNA-96 is associated with poor prognosis and promotes proliferation, migration and invasion in cholangiocarcinoma cells via MTSS1. Experimental & Therapeutic Medicine, 19, 2757–2765.

    CAS  Google Scholar 

  156. Zhang, S., & Guo, W. (2019). Long non-coding RNA MEG3 suppresses the growth of glioma cells by regulating the miRNA96-5p/MTSS1 signaling pathway. Molecular Medicine Reports, 20, 4215–4225.

    PubMed  PubMed Central  CAS  Google Scholar 

  157. Xie, W., Sun, F., Chen, L., & Cao, X. (2018). miR-96 promotes breast cancer metastasis by suppressing MTSS1. Oncology Letters, 15, 3464–3471.

    PubMed  PubMed Central  Google Scholar 

  158. Guo, Z., Li, J., Sun, J., Sun, L., Zhou, Y., & Yu, Z. (2018). miR-346 promotes HCC progression by suppressing breast cancer metastasis suppressor 1 expression. Oncology Research, 26, 1073–1081.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Yue, C. F., Li, L. S., Ai, L., Deng, J. K., & Guo, Y. M. (2021). sMicroRNA-28-5p acts as a metastasis suppressor in gastric cancer by targeting Nrf2. Experimental Cell Research, 402, 112553.

    Article  PubMed  CAS  Google Scholar 

  160. Shibuya, N., Kakeji, Y., & Shimono, Y. (2020). MicroRNA-93 targets WASF3 and functions as a metastasis suppressor in breast cancer. Cancer Sciences, 111, 2093–2103.

    Article  CAS  Google Scholar 

  161. Wang, M., Wang, M., Wang, Z., Yu, X., Song, Y., Wang, C., Xu, Y., Wei, F., Zhao, Y., & Xu, Y. (2018). Long non-coding RNA-CTD-2108O9.1 represses breast cancer metastasis by influencing leukemia inhibitory factor receptor. Cancer Sciences, 109, 1764–1774.

    Article  CAS  Google Scholar 

  162. Rang, Z., Yang, G., Wang, Y. W., & Cui, F. (2016). miR-542-3p suppresses invasion and metastasis by targeting the proto-oncogene serine/threonine protein kinase, PIM1, in melanoma. Biochemical and Biophysical Research Communications, 474, 315–320.

    Article  PubMed  CAS  Google Scholar 

  163. Li, C., Yuan, L., Han, S., Xuan, M., Liu, D., Tian, B., & Yu, W. (2020). Reduced Kiss-1 expression is associated with clinical aggressive feature of gastric cancer patients and promotes migration and invasion in gastric cancer cells. Oncology Reports, 44, 1149–1157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Lu, G., Wang, X., Wang, Y., Cheng, Z., & Zhou, L. (2018). Value of CagA, HER2, ALDH1, and KiSS-1 in predicting metastasis and prognosis for gastric adenocarcinoma. International Journal of Clinical & Experimental Pathology, 11, 3628–3637.

    Google Scholar 

  165. Cao, F., Chen, L., Liu, M., Lin, W., Ji, J., You, J., Qiao, F., & Liu, H. (2016). Expression of preoperative KISS1 gene in tumor tissue with epithelial ovarian cancer and its prognostic value. Medicine (Baltimore), 95, e5296.

    Article  PubMed  CAS  Google Scholar 

  166. Zhu, B., Wang, Y., Wang, X., Wu, S., Zhou, L., Gong, X., Song, W., & Wang, D. (2018). Evaluation of the correlation of MACC1, CD44, Twist1, and KiSS-1 in the metastasis and prognosis for colon carcinoma. Diagnostic Pathology, 13, 45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Yue, X., Han, Z., Zhang, L., Li, J., & Gong, X. (2018). Aberrant expression of ALDH1, MMP9, Integrin v 3, and KiSS-1 in invasive ductal carcinoma and their clinical significance. International Journal of Clinical & Experimental Pathology, 11, 3511–3522.

    Google Scholar 

  168. Shoushtari, A. N., Szmulewitz, R. Z., & Rinker-Schaeffer, C. W. (2011). Metastasis-suppressor genes in clinical practice: Lost in translation? Nature Reviews Clinical Oncology, 8, 333–342.

    Article  PubMed  CAS  Google Scholar 

  169. Ci, H., & Wu, L. (2022). Expression of KAI1 and AGR2 in lung adenocarcinoma and their clinicopathological significance. Medicine (Baltimore), 101, e32498.

    Article  PubMed  CAS  Google Scholar 

  170. Al-Khater, K. M., Almofty, S., Ravinayagam, V., Alrushaid, N., & Rehman, S. (2021). Role of a metastatic suppressor gene KAI1/CD82 in the diagnosis and prognosis of breast cancer. Saudi Journal of Biological Scienc, 28, 3391–3398.

    Article  CAS  Google Scholar 

  171. Xu, J., Zhang, Y., Wang, Y., Tao, X., Cheng, L., Wu, S., & Tao, Y. (2018). Correlation of KAI1, CD133 and vasculogenic mimicry with the prediction of metastasis and prognosis in hepatocellular carcinoma. International Journal of Clinical & Experimental Pathology, 11, 3638–3646.

    Google Scholar 

  172. Sun, B., Cheng, Z., & Sun, J. (2018). Associations of MACC1, AGR2, and KAI1 expression with the metastasis and prognosis in head and neck squamous cell carcinoma. International Journal of Clinical & Experimental Pathology, 11, 822–830.

    Google Scholar 

  173. Bucciarelli, P. R., Tan, K. S., Chudgar, N. P., Brandt, W., Montecalvo, J., Eguchi, T., Liu, Y., Aly, R., Travis, W. D., Adusumilli, P. S., & Jones, D. R. (2018). BRMS1 expression in surgically resected lung adenocarcinoma predicts future metastases and is associated with a poor prognosis. Journal of Thoracic Oncology, 13, 73–84.

    Article  PubMed  CAS  Google Scholar 

  174. Wu, Y., Wang, H., Zhi, J., Hu, L., Hou, X., Ruan, X., Zheng, X., Liu, H., & Gao, M. (2019). BRMS1 downregulation is a poor prognostic biomarker in anaplastic thyroid carcinoma patients. Oncology Targets & Therapeutics, 12, 6937–6945.

    CAS  Google Scholar 

  175. Lin, L. Z., Cai, M. G., Dai, Y. C., Zheng, Z. B., Jiang, F. F., Shi, L. L., Pan, Y., & Song, H. B. (2017). BRMS1 gene expression may be associated with clinico-pathological features of breast cancer. Bioscience Reports, 37, BSR20170672.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Lin, L., Cai, M., Dai, Y., Zheng, Z., Jiang, F., Shi, L., Pan, Y., & Song, H. B. (2018). Breast cancer metastasis suppressor gene, breast cancer metastasis suppressor 1, may be associated with clinicopathological features of breast cancer. Journal of Cancer Research & Therapeutics, 14, S368–S374.

    Article  CAS  Google Scholar 

  177. Han, W., Zhang, C., Cao, F. Y., Cao, F., Jiang, L., & Ding, H. Z. (2017). Prognostic and clinicopathological value of NM23 expression in patients with breast cancer: A systematic review and meta-analysis. Current Problems in Cancer, 41, 80–93.

    Article  PubMed  Google Scholar 

  178. Kanat, O., Adim, S., Evrensel, T., Yerci, O., Ediz, B., Kurt, E., Demiray, M., Gonullu, G., Arslan, M., & Manavoglu, O. (2004). Prognostic value of nm23 in gastrointestinal stromal tumors. Medical Oncology, 21, 53–58.

    Article  PubMed  Google Scholar 

  179. van den Oord, J. J., Maes, A., Stas, M., Nuyts, J., De, W., & I, & De Wolf-Peeters, C. (1997). Prognostic significance of nm23 protein expression in malignant melanoma. An immunohistochemical study, Melanoma Research, 7, 121–128.

    Article  PubMed  Google Scholar 

  180. Snyder, D., Wang, Y., & Kaetzel, D. M. (2020). A rare subpopulation of melanoma cells with low expression of metastasis suppressor NME1 is highly metastatic in vivo. Science Reports, 10, 1971–58996.

    Article  CAS  Google Scholar 

  181. Song, L. J., Liu, Q., Meng, X. R., Li, S., Wang, L. X., Fan, Q. X., & Xuan, X. Y. (2016). DLC-1 is an independent prognostic marker and potential therapeutic target in hepatocellular cancer. Diagnostic Pathology, 11, 19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. An, X., Lin, X., Yang, A., Jiang, Q., Geng, B., Huang, M., Lu, J., Xiang, Z., Yuan, Z., Wang, S., Shi, Y., & Zhu, H. (2020). Cavin3 suppresses breast cancer metastasis via inhibiting AKT pathway. Frontiers in Pharmacology, 11, 01228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Yang, J., Lv, Z., Huang, J., Zhao, Y., & Li, Y. (2017). High expression of NME1 correlates with progression and poor prognosis in patients of hepatocellular carcinoma. International Journal of Clinical & Experimental Pathology, 10, 8561–8568.

    Google Scholar 

  184. Szarcvel, S. K., Op de, B. K., Ratman, D., Wouters, A., Beck, I. M., Declerck, K., Heyninck, K., Fransen, E., Bracke, M., De, B. K., Lardon, F., Van, C. G., & VandenBerghe, W. (2014). Pharmacological levels of Withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells. PLoS ONE, 9, e87850.

    Article  Google Scholar 

  185. Shandiz, S. A. S., Sharifian, F., Behboodi, S., Ghodratpour, F., & Baghbani-Arani, F. (2021). Evaluation of metastasis suppressor genes expression and in vitro anti-cancer effects of zinc oxide nanoparticles in human breast cancer cell lines MCF-7 and T47D. Avicenna. J. Med. Biotechnol., 13, 9–14.

    PubMed  PubMed Central  Google Scholar 

  186. Badak, B., Aykanat, N. E. B., Kacar, S., Sahinturk, V., Arik, D., & Canaz, F. (2021). Effects of astaxanthin on metastasis suppressors in ductal carcinoma. A preliminary study. Annali Italiani di Chirurgia, 92, 565–574.

    PubMed  Google Scholar 

  187. Zhu, C., Takasu, C., Morine, Y., Bando, Y., Ikemoto, T., Saito, Y., Yamada, S., Imura, S., Arakawa, Y., & Shimada, M. (2015). KISS1 associates with better outcome via inhibiting matrix metalloproteinase-9 in colorectal liver metastasis. Annals of Surgical Oncology, 22, S1516–S1523.

    Article  PubMed  Google Scholar 

  188. Liang, Q., Peng, J., Xu, Z., Li, Z., Jiang, F., Ouyang, L., Wu, S., Fu, C., Liu, Y., Liu, Y., & Yan, Y. (2022). Pan-cancer analysis of the prognosis and immunological role of AKAP12: A potential biomarker for resistance to anti-VEGF inhibitors. Frontiers in Genetics, 13, 943006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Bateman, N. W., Jaworski, E., Ao, W., Wang, G., Litzi, T., Dubil, E., Marcus, C., Conrads, K. A., Teng, P. N., Hood, B. L., Phippen, N. T., Vasicek, L. A., McGuire, W. P., Paz, K., Sidransky, D., Hamilton, C. A., Maxwell, G. L., Darcy, K. M., & Conrads, T. P. (2015). Elevated AKAP12 in paclitaxel-resistant serous ovarian cancer cells is prognostic and predictive of poor survival in patients. Journal of Proteome Research, 14, 1900–1910.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Chappell, N. P., Teng, P. N., Hood, B. L., Wang, G., Darcy, K. M., Hamilton, C. A., Maxwell, G. L., & Conrads, T. P. (2012). Mitochondrial proteomic analysis of Cisplatin resistance in ovarian cancer. Journal of Proteome Research, 11, 4605–4614.

    Article  PubMed  CAS  Google Scholar 

  191. Lopez-Ayllon, B. D., Moncho-Amor, V., Abarrategi, A., de Caceres, I. I., Castro-Carpeno, J., Belda-Iniesta, C., Perona, R., & Sastre, L. (2014). Cancer stem cells and cisplatin-resistant cells isolated from non-small-lung cancer cell lines constitute related cell populations. Cancer Medicine, 3, 1099–1111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Iacobuzio-Donahue, C. A. (2009). Epigenetic changes in cancer. Annual Review of Pathology: Mechanisms of Disease, 4, 229–249.

    Article  CAS  Google Scholar 

  193. Kong, B., Lv, Z. D., Wang, Y., Jin, L. Y., Ding, L., & Yang, Z. C. (2015). Down-regulation of BRMS1 by DNA hypermethylation and its association with metastatic progression in triple-negative breast cancer. International Journal of Clinical & Experimental Pathology, 8, 11076–11083.

    CAS  Google Scholar 

  194. Verkaik, N. S., van Steenbrugge, G. J., van Weerden, W. M., Bussemakers, M. J., & van der Kwast, T. H. (2000). Silencing of CD44 expression in prostate cancer by hypermethylation of the CD44 promoter region. Lab Investigation, 80, 1291–1298.

    Article  CAS  Google Scholar 

  195. Lee, J., Lee, M. S., Jeoung, D. I., Kim, Y. M., & Lee, H. (2017). Promoter CpG-site methylation of the KAI1 metastasis suppressor gene contributes to its epigenetic repression in prostate cancer. Prostate, 77, 350–360.

    Article  PubMed  CAS  Google Scholar 

  196. Chen, S. Q., Chen, Z. H., Lin, S. Y., Dai, Q. B., Fu, L. X., & Chen, R. Q. (2014). KISS1 methylation and expression as predictors of disease progression in colorectal cancer patients. World Journal of Gastroenterology, 20, 10071–10081.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Mardin, W. A., Haier, J., & Mees, S. T. (2013). Epigenetic regulation and role of metastasis suppressor genes in pancreatic ductal adenocarcinoma. BMC Cancer, 13, 264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Stubendorff, B., Wilhelm, K., Posselt, K., Catto, J., Hartmann, A., Bertz, S., Füssel, S., Ovotny, V., Oma, M., Ajda, M., Ehmann, J., Underlich, H., Rimm, M. O., Töckle, M., & Unker, K. (2019). A three-gene methylation marker panel for the nodal metastatic risk assessment of muscle-invasive bladder cancer. Journal of Cancer Research Clinical Oncology, 145, 811–820.

    Article  PubMed  CAS  Google Scholar 

  199. Spillman, M. A., Lacy, J., Murphy, S. K., Whitaker, R. S., Grace, L., Teaberry, V., Marks, J. R., & Berchuck, A. (2007). Regulation of the metastasis suppressor gene MKK4 in ovarian cancer. Gynecologic Oncology, 105, 312–320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Hartsough, M. T., Clare, S. E., Mair, M., Elkahloun, A. G., Sgroi, D., Osborne, C. K., Clark, G., & Steeg, P. S. (2001). Elevation of breast carcinoma Nm23-H1 metastasis suppressor gene expression and reduced motility by DNA methylation inhibition. Cancer Research, 61, 2320–2327.

    PubMed  CAS  Google Scholar 

  201. Wei, H., Liu, Z., She, H., Liu, B., Gu, J., Wei, D., Zhang, X., Wang, J., Qi, S., & Ping, F. (2017). Promoter methylation and expression of Raf kinase inhibitory protein in esophageal squamous cell carcinoma. Oncology Letters, 13, 1866–1872.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Li, D. X., Cai, H. Y., Wang, X., Feng, Y. L., & Cai, S. W. (2014). Promoter methylation of Raf kinase inhibitory protein: A significant prognostic indicator for patients with gastric adenocarcinoma. Experimental & Therapeutic Medicine, 8, 844–850.

    Article  Google Scholar 

  203. Guo, W., Dong, Z., Lin, X., Zhang, M., Kuang, G., & Zhu, T. (2012). Decreased expression and aberrant methylation of Raf kinase inhibitory protein gene in esophageal squamous cell carcinoma. Cancer Investigation, 30, 703–711.

    Article  PubMed  CAS  Google Scholar 

  204. Guo, W., Dong, Z., Guo, Y., Lin, X., Chen, Z., Kuang, G., & Yang, Z. (2013). Aberrant methylation and loss expression of RKIP is associated with tumor progression and poor prognosis in gastric cardia adenocarcinoma. Clinical and Experimental Metastasis, 30, 265–275.

    Article  PubMed  CAS  Google Scholar 

  205. Jo, U., Whang, Y. M., Kim, H. K., & Kim, Y. H. (2009). AKAP12alpha is associated with promoter methylation in lung cancer. Cancer Research and Treatment, 38, 144–151.

    Article  Google Scholar 

  206. Bonazzi, V. F., Irwin, D., & Hayward, N. K. (2009). Identification of candidate tumor suppressor genes inactivated by promoter methylation in melanoma. Genes Chromosomes & Cancer, 48, 10–21.

    Article  CAS  Google Scholar 

  207. Liu, W., Guan, M., Su, B., Ye, C., Li, J., Zhang, X., Liu, C., Li, M., Lin, Y., & Lu, Y. (2010). Quantitative assessment of AKAP12 promoter methylation in colorectal cancer using methylation-sensitive high resolution melting: Correlation with dukes’ stage. Cancer Biology and Therapy, 9, 862–871.

    Article  PubMed  CAS  Google Scholar 

  208. Mardin, W., Petrov, K., Enns, A., Senninger, N., Haier, J., & Mees, S. (2010). SERPINB5 and AKAP12 – Expression and promoter methylation of metastasis suppressor genes in pancreatic ductal adenocarcinoma. BMC Cancer, 10, 549.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Wu, W., Zhang, J., Yang, H., Shao, Y., & Yu, B. (2010). Examination of AKAP12 promoter methylation in skin cancer using methylation-sensitive high-resolution melting analysis. Clinical and Experimental Dermatology, 36, 381–385.

    Article  PubMed  Google Scholar 

  210. Goeppert, B., Schmezer, P., Dutruel, C., Oakes, C., Renner, M., Breinig, M., Warth, A., Vogel, M. N., Mittelbronn, M., Mehrabi, A., Gdynia, G., Penzel, R., Longerich, T., Breuhahn, K., Popanda, O., Plass, C., Schirmacher, P., & Kern, M. A. (2010). Down-regulation of tumor suppressor A kinase anchor protein 12 in human hepatocarcinogenesis by epigenetic mechanisms. Hepatology, 52, 2023–2033.

    Article  PubMed  CAS  Google Scholar 

  211. Wilhelm, T., Lipka, D. B., Witte, T., Wierzbinska, J. A., Fluhr, S., Helf, M., Mucke, O., Claus, R., Konermann, C., Nollke, P., Niemeyer, C. M., Flotho, C., & Plass, C. (2016). Epigenetic silencing of AKAP12 in juvenile myelomonocytic leukemia. Epigenetics, 11, 110–119.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Wang, Z., Kambhampati, S., Cheng, Y., Ma, K., Simsek, C., Tieu, A. H., Abraham, J. M., Liu, X., Prasath, V., Duncan, M. D., Stark, A., Trick, A., Tsai, H. L., Wang, H., He, Y., Khashab, M. A., Ngamruengphong, S., Shin, E. J., Wang, T. H., & Meltzer, S. J. (2019). Methylation biomarker panel performance in EsophaCap cytology samples for diagnosing Barrett’s esophagus: A prospective validation study. Clinical Cancer Research, 25, 2127–2135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Li, Q., & Chen, H. (2011). Epigenetic modifications of metastasis suppressor genes in colon cancer metastasis. Epigenetics, 6, 849–852.

    Article  PubMed  CAS  Google Scholar 

  214. Gelman, I. H. (2010). Emerging roles for SSeCKS/Gravin/AKAP12 in the control of cell proliferation, cancer malignancy, and barriergenesis. Genes & Cancer, 1, 1147–1156.

    Article  CAS  Google Scholar 

  215. Lin, X., Tombler, E., Nelson, P. J., Ross, M., & Gelman, I. H. (1996). A novel src- and ras-suppressed protein kinase C substrate associated with cytoskeletal architecture. Journal of Biological Chemistry, 271, 28430–28438.

    Article  PubMed  CAS  Google Scholar 

  216. Esposito, S., Russo, M. V., Airoldi, I., Tupone, M. G., Sorrentino, C., Barbarito, G., Di, M. S., & Di, C. E. (2015). SNAI2/Slug gene is silenced in prostate cancer and regulates neuroendocrine differentiation, metastasis-suppressor and pluripotency gene expression. Oncotarget, 6, 17121–17134.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Bu, Y., & Gelman, I. H. (2007). v-Src-mediated down-regulation of SSeCKS metastasis suppressor gene promoter by the recruitment of HDAC1 into a USF1-Sp1-Sp3 complex. Journal of Biological Chemistry, 282, 26725–26739.

    Article  PubMed  CAS  Google Scholar 

  218. Bu, Y., Gao, L., & Gelman, I. H. (2010). Role for transcription factor TFII-I in the suppression Of SSeCKS/Gravin/Akap12 transcription by Src. International Journal of Cancer, 128, 1836–1842.

    Article  Google Scholar 

  219. Li, B., & Li, C. (2017). Suppression of prostate cancer metastasis by DPYSL3-targeted saRNA. Advances in Experimental Medicine & Biology, 983, 207–216.

    Article  CAS  Google Scholar 

  220. Li, L. C., Okino, S. T., Zhao, H., Pookot, D., Place, R. F., Urakami, S., Enokida, H., & Dahiya, R. (2006). Small dsRNAs induce transcriptional activation in human cells. Proceedings of the National Academy of Science, U. S. A., 103, 17337–17342.

    Article  CAS  Google Scholar 

  221. Gilbert, L. A., Horlbeck, M. A., Adamson, B., Villalta, J. E., Chen, Y., Whitehead, E. H., Guimaraes, C., Panning, B., Ploegh, H. L., Bassik, M. C., Qi, L. S., Kampmann, M., & Weissman, J. S. (2014). Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 159, 647–661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Wong, K. M., Song, J., Saini, V., & Wong, Y. H. (2019). Small molecules as drugs to upregulate metastasis suppressors in cancer cells. Current Medicinal Chemistry, 26, 5876–5899.

    Article  PubMed  CAS  Google Scholar 

  223. Sahu, A., Verma, S., Varma, M., & Yadav, M. K. (2022). Impact of ErbB receptors and anticancer drugs against breast cancer: A review. Current Pharmocology and Biotechnology, 23, 787–802.

    Article  CAS  Google Scholar 

  224. Pan, Q., Lu, Y., Xie, L., Wu, D., Liu, R., Gao, W., Luo, K., He, B., & Pu, Y. (2023). Recent advances in boosting EGFR tyrosine kinase inhibitors-based cancer therapy. Molecular Pharmacology, 20, 829–852.

    Article  CAS  Google Scholar 

  225. Ramani, S., Samant, S., & Manohar, S. M. (2022). The story of EGFR: From signaling pathways to a potent anticancer target, Future. Future Medicinal Chemistry, 14, 1267–1288.

    Article  PubMed  CAS  Google Scholar 

  226. Hantschel, O., Rix, U., & Superti-Furga, G. (2008). Target spectrum of the BCR-ABL inhibitors imatinib, nilotinib and dasatinib. Leukemia and Lymphoma, 49, 615–619.

    Article  PubMed  CAS  Google Scholar 

  227. Shandiz, S. A. S., Khosravani, M., Mohammadi, S., Noorbazargan, H., Mirzaie, A., Inanlou, D. N., Jalali, M. D., Jouzaghkar, H., Baghbani-Arani, F., & Keshavarz-Pakseresht, B. (2016). Evaluation of imatinib mesylate (Gleevec) on KAI1/CD82 gene expression in breast cancer MCF-7 cells using quantitative real-time PCR. Asian Pacific Journal of Tropical Biomedicine, 6, 159–163.

    Article  CAS  Google Scholar 

  228. Song, K., Yuan, Y., Lin, Y., Wang, Y. X., Zhou, J., Gai, Q. J., Zhang, L., Mao, M., Yao, X. X., Qin, Y., Lu, H. M., Zhang, X., Cui, Y. H., Bian, X. W., Zhang, X., & Wang, Y. (2018). ERBB3, IGF1R, and TGFBR2 expression correlate with PDGFR expression in glioblastoma and participate in PDGFR inhibitor resistance of glioblastoma cells. American Journal of Cancer Research, 8, 792–809.

    PubMed  PubMed Central  CAS  Google Scholar 

  229. Keshavarz-Pakseresht, B., Shandiz, S. A., & Baghbani-Arani, F. (2017). Imatinib induces up-regulation of NM23, a metastasis suppressor gene, in human hepatocarcinoma (HepG2) cell line. Gastroenterology and Hepatology, Bedside to Bench, 10, 29–33.

    Google Scholar 

  230. Zhang, Y., Xia, M., Jin, K., Wang, S., Wei, H., Fan, C., Wu, Y., Li, X., Li, X., Li, G., Zeng, Z., & Xiong, W. (2018). Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Molecular Cancer, 17, 45.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Titus, B., Frierson, H. F., Jr., Conaway, M., Ching, K., Guise, T., Chirgwin, J., Hampton, G., & Theodorescu, D. (2005). Endothelin axis is a target of the lung metastasis suppressor gene RhoGDI2. Cancer Research, 65, 7320–7327.

    Article  PubMed  CAS  Google Scholar 

  232. Palmieri, D., Halverson, D. O., Ouatas, T., Horak, C. E., Salerno, M., Johnson, J., Figg, W. D., Hollingshead, M., Hursting, S., Berrigan, D., Steinberg, S. M., Merino, M. J., & Steeg, P. S. (2005). Medroxyprogesterone acetate elevation of Nm23-H1 metastasis suppressor expression in hormone receptor-negative breast cancer. Journal of the National Cancer Institute, 97, 632–642.

    Article  PubMed  CAS  Google Scholar 

  233. Mashimo, T., Watabe, M., Hirota, S., Hosobe, S., Miura, K., Tegtmeyer, P. J., Rinker-Shaeffer, C. W., & Watabe, K. (1998). The expression of the KAI1 gene, a tumor metastasis suppressor, is directly activated by p53. Proceedings of the National Academy of Science. U. S. A., 95, 11307–11311.

    Article  CAS  Google Scholar 

  234. Labbozzetta, M., Poma, P., Vivona, N., Gulino, A., D’Alessandro, N., & Notarbartolo, M. (2015). Epigenetic changes and nuclear factor-kB activation, but not microRNA-224, downregulate Raf-1 kinase inhibitor protein in triple-negative breast cancer SUM 159 cells. Oncology Letters, 10, 3807–3815.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Beach, S., Tang, H., Park, S., Dhillon, A. S., Keller, E. T., Kolch, W., & Yeung, K. C. (2008). Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene, 27, 2243–2248.

    Article  PubMed  CAS  Google Scholar 

  236. Sun, M., Song, C. X., Huang, H., Frankenberger, C. A., Sankarasharma, D., Gomes, S., Chen, P., Chen, J., Chada, K. K., He, C., & Rosner, M. R. (2013). HMGA2/TET1/HOXA9 signaling pathway regulates breast cancer growth and metastasis. Proceedings of the National Academy of Science, U.S.A, 110, 9920–9925.

    Article  CAS  Google Scholar 

  237. Lee, J. E., & Kim, J. H. (2015). Valproic acid inhibits the invasion of PC3 prostate cancer cells by upregulating the metastasis suppressor protein NDRG1. Genetics and Molecular Biology, 38, 527–533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Meadows, G. G. (2012). Diet, nutrients, phytochemicals, and cancer metastasis suppressor genes. Cancer Metastasis Review, 31, 441–454.

    Article  CAS  Google Scholar 

  239. Wijesinghe, T. P., Dharmasivam, M., Dai, C. C., & Richardson, D. R. (2021). Innovative therapies for neuroblastoma: The surprisingly potent role of iron chelation in up-regulating metastasis and tumor suppressors and down-regulating the key oncogene, N-myc. Pharmacology Research, 173, 105889.

    Article  CAS  Google Scholar 

  240. Le, N. T., & Richardson, D. R. (2004). Iron chelators with high antiproliferative activity up-regulate the expression of a growth inhibitory and metastasis suppressor gene: A link between iron metabolism and proliferation. Blood, 104, 2967–2975.

    Article  PubMed  CAS  Google Scholar 

  241. He, X., Ma, X., Wang, C., Luan, M., Li, Y., Huang, X., & Ma, K. (2021). The peptide mimicking small extracellular ring domain of CD82 inhibits tumor cell migration in vitro and metastasis in vivo. Journal of Cancer Research Clinical Oncology, 147, 1927–1934.

    Article  PubMed  CAS  Google Scholar 

  242. He, X., Huang, X., Wang, C., Luan, M., Li, Y., Ma, X., & Ma, K. (2020). The peptide mimicking small extracellular ring domain of CD82 inhibits epithelial-mesenchymal transition by downregulating Wnt pathway and upregulating hippo pathway. Biochemical Biophysical Research Communications, 533, 338–345.

    Article  PubMed  CAS  Google Scholar 

  243. Cheng, S., Castillo, V., Eliaz, I., & Sliva, D. (2015). Honokiol suppresses metastasis of renal cell carcinoma by targeting KISS1/KISS1R signaling. International Journal of Oncology, 46, 2293–2298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. MacLean, D. B., Matsui, H., Suri, A., Neuwirth, R., & Colombel, M. (2014). Sustained exposure to the investigational Kisspeptin analog, TAK-448, down-regulates testosterone into the castration range in healthy males and in patients with prostate cancer: Results from two phase 1 studies. Journal of Clinical Endocrinology & Metabolism, 99, E1445–E1453.

    Article  CAS  Google Scholar 

  245. Tsoutsouki, J., Abbara, A., & Dhillo, W. (2022). Novel therapeutic avenues for kisspeptin. Current Opinions in Pharmacology, 67, 102319.

    Article  CAS  Google Scholar 

  246. Moritz, M. N. O., Casali, B. C., Stotzer, S., dos Santos, P. K., & Selistre-de-Araujo, H. S. (2022). Alternagin-C, an alpha2beta1 integrin ligand, attenuates collagen-based adhesion, stimulating the metastasis suppressor 1 expression in triple-negative breast tumor cells. Toxicon, 210, 1–10.

    Article  PubMed  CAS  Google Scholar 

  247. Myers, R. B., & Grizzle, W. E. (1997). Changes in biomarker expression in the development of prostatic adenocarcinoma. Biotechnic and Histochemistry, 72, 86–95.

    Article  PubMed  CAS  Google Scholar 

  248. Bozdogan, O., Yulug, I. G., Vargel, I., Cavusoglu, T., Karabulut, A. A., Karahan, G., & Sayar, N. (2015). Differential expression patterns of metastasis suppressor proteins in basal cell carcinoma. International Journal of Dermatology, 54, 905–915.

    Article  PubMed  CAS  Google Scholar 

  249. Bozdogan, O., Vargel, I., Cavusoglu, T., Karabulut, A. A., Karahan, G., Sayar, N., Atasoy, P., & Yulug, I. G. (2016). Metastasis suppressor proteins in cutaneous squamous cell carcinoma. Pathology Research & Practice, 212, 608–615.

    Article  CAS  Google Scholar 

  250. Kim, H. L., Vander, G., Yang, X. M., Benson, D. A., Dubauskas, Z., Yoshida, B. A., Chekmareva, M. A., Ichikawa, Y., Sokoloff, M. H., Zhan, P., Karrison, T., Lin, A. N., Stadler, W. M., Ichikawa, T., Rubin, M. A., & Rinker-Schaeffer, C. W. (2001). Mitogen-activated protein kinase kinase 4 metastasis suppressor gene expression is inversely related to histological pattern in advancing human prostatic cancers. Cancer Research, 61, 2833–2837.

    PubMed  CAS  Google Scholar 

  251. Khamis, Z. I., Iczkowski, K. A., & Sang, Q. X. A. (2011). Metastasis suppressors in human benign prostate, intraepithelial neoplasia, and invasive cancer: Their prospects as therapeutic agents. Medicinal Research Reviews, 32, 1026–1077.

    Article  PubMed  Google Scholar 

  252. Zhong, Y., Naito, Y., Cope, L., Naranjo-Suarez, S., Saunders, T., Hong, S. M., Goggins, M. G., Herman, J. M., Wolfgang, C. L., & Iacobuzio-Donahue, C. A. (2014). Functional p38 MAPK identified by biomarker profiling of pancreatic cancer restrains growth through JNK inhibition and correlates with improved survival. Clinical Cancer Research, 20, 6200–6211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Mikami, S., Mizuno, R., Kosaka, T., Saya, H., Oya, M., & Okada, Y. (2015). Expression of TNF-a and CD44 is implicated in poor prognosis, cancer cell invasion, metastasis and resistance to the sunitinib treatment in clear cell renal cell carcinomas. International Journal of Cancer, 136, 1504–1514.

    Article  PubMed  CAS  Google Scholar 

  254. Swarts, D. R., Henfling, M. E., Van, N. L., van Suylen, R. J., Dingemans, A. M., Dinjens, W. N., Haesevoets, A., Rudelius, M., Thunnissen, E., Volante, M., Van, C. W., Van, E. M., Ramaekers, F. C., & Speel, E. J. (2013). CD44 and OTP are strong prognostic markers for pulmonary carcinoids. Clinical Cancer Research, 19, 2197–2207.

    Article  PubMed  CAS  Google Scholar 

  255. Wu, Q., Yang, Y., Wu, S., Li, W., Zhang, N., Dong, X., & Ou, Y. (2015). Evaluation of the correlation of KAI1/CD82, CD44, MMP7 and b-catenin in the prediction of prognosis and metastasis in colorectal carcinoma. Diagnostic Pathology, 10, 176.

    Article  PubMed  PubMed Central  Google Scholar 

  256. Zhang, G., Cheng, Y., Chen, G., Tang, Y., Ardekani, G., Rotte, A., Martinka, M., McElwee, K., Xu, X., Wang, Q., & Zhou, Y. (2015). Loss of tumor suppressors KAI1 and p27 identifies a unique subgroup of primary melanoma patients with poor prognosis. Oncotarget, 6, 23026–23035.

    Article  PubMed  PubMed Central  Google Scholar 

  257. Zhou, L., Yu, L., Wu, S., Feng, Z., Song, W., & Gong, X. (2015). Clinicopathological significance of KAI1 expression and epithelial-mesenchymal transition in non-small cell lung cancer. World Journal of Surgical Oncology, 13, 234.

    Article  PubMed  PubMed Central  Google Scholar 

  258. Lu, G., Zhou, L., Zhang, X., Zhu, B., Wu, S., Song, W., Gong, X., Wang, D., & Tao, Y. (2016). The expression of metastasis-associated in colon cancer-1 and KAI1 in gastric adenocarcinoma and their clinical significance. World Journal of Surgical Oncology, 14, 276.

    Article  PubMed  PubMed Central  Google Scholar 

  259. Patil, N. N., Wadhwan, V., Chaudhary, M., & Nayyar, A. S. (2016). KAI-1 and p53 expression in oral squamous cell carcinomas: Markers of significance in future diagnostics and possibly therapeutics. Journal of Oral & Maxillofacial Pathology, 20, 384–389.

    Article  Google Scholar 

  260. Krishna, L. T., Verma, A., Thakur, G. K., Banerjee, B., Kaur, N., Singh, U. R., & Sharma, S. (2019). Down regulation of KAI1/CD82 in lymph node positive and advanced T-stage group in breast cancer patients. Asian Pacific Journal of Cancer Prevention, 20, 3321–3329.

    Article  Google Scholar 

  261. Ulasov, I. V., Kaverina, N. V., Pytel, P., Thaci, B., Liu, F., Hurst, D. R., Welch, D. R., Sattar, H. A., Olopade, O. I., Baryshnikov, A. Y., Kadagidze, Z. G., & Lesniak, M. S. (2012). Clinical significance of KISS1 protein expression for brain invasion and metastasis. Cancer, 118, 2096–2105.

    Article  PubMed  CAS  Google Scholar 

  262. Chen, Y., Yusenko, M. V., & Kovacs, G. (2011). Lack of KISS1R expression is associated with rapid progression of conventional renal cell carcinomas. Journal of Pathology, 223, 46–53.

    Article  PubMed  CAS  Google Scholar 

  263. Wang, H., Jones, J., Turner, T., He, Q. P., Hardy, S., Grizzle, W. E., Welch, D. R., & Yates, C. (2012). Clinical and biological significance of KISS1 expression in prostate cancer. American Journal of Pathology, 180, 1170–1178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Theodorescu, D., Sapinoso, L. M., Conaway, M. R., Oxford, G., Hampton, G. M., & Frierson, H. F., Jr. (2004). Reduced expression of metastasis suppressor RhoGDI2 is associated with decreased survival for patients with bladder cancer. Clinical Cancer Research, 10, 3800–3806.

    Article  PubMed  CAS  Google Scholar 

  265. Parr, C., & Jiang, W. G. (2009). Metastasis suppressor 1 (MTSS1) demonstrates prognostic value and anti-metastatic properties in breast cancer. European Journal of Cancer, 45, 1673–1683.

    Article  PubMed  CAS  Google Scholar 

  266. Xu, G., Zhang, M., Zhu, H., & Xu, J. (2017). A 15-gene signature for prediction of colon cancer recurrence and prognosis based on SVM. Gene, 604, 33–40.

    Article  PubMed  CAS  Google Scholar 

  267. Zhang, G. M., Goyal, H., & Song, L. L. (2018). Bioinformatics analysis of differentially expressed miRNA-related mRNAs and their prognostic value in breast carcinoma. Oncology Reports, 39, 2865–2872.

    PubMed  CAS  Google Scholar 

  268. Pan, J., Xiang, Z., Dai, Q., Wang, Z., Liu, B., & Li, C. (2019). Prediction of platinum-resistance patients of gastric cancer using bioinformatics. Journal of Cell Biochemistry, 120, 13478–13486.

    Article  CAS  Google Scholar 

  269. Marshall, J. C., Collins, J., Marino, N., & Steeg, P. (2010). The Nm23-H1 metastasis suppressor as a translational target. European Journal of Cancer, 46, 1278–1282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  270. Natarajan, K., Mori, N., Artemov, D., & Bhujwalla, Z. M. (2002). Exposure of human breast cancer cells to the anti-inflammatory agent indomethacin alters choline phospholipid metabolites and Nm23 expression. Neoplasia, 4, 409–416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Zhou, X., Jiao, D., Dou, M., Zhang, W., Lv, L., Chen, J., Li, L., Wang, L., & Han, X. (2020). Curcumin inhibits the growth of triple-negative breast cancer cells by silencing EZH2 and restoring DLC1 expression. Journal of Cell & Molecular Medicine, 24, 10648–10662.

    Article  CAS  Google Scholar 

  272. Liu, Y., Zhou, J., Hu, Y., Wang, J., & Yuan, C. (2017). Curcumin inhibits growth of human breast cancer cells through demethylation of DLC1 promoter. Molecular Cell Biochemistry, 425, 47–58.

    Article  CAS  Google Scholar 

  273. Au, S. L., Wong, C. C., Lee, J. M., Wong, C. M., & Ng, I. O. (2013). EZH2-mediated H3K27me3 is involved in epigenetic repression of deleted in liver cancer 1 in human cancers. PLoS ONE, 8, e68226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  274. Park, S., Ahn, E. S., Lee, S., Jung, M., Park, J. H., Yi, S. Y., & Yeom, C. H. (2009). Proteomic analysis reveals upregulation of RKIP in S-180 implanted BALB/C mouse after treatment with ascorbic acid. Journal of Cell Biochemistry, 106, 1136–1145.

    Article  CAS  Google Scholar 

  275. Huang, Q., Bai, F., Nie, J., Lu, S., Lu, C., Zhu, X., Zhuo, L., & Lin, X. (2017). Didymin ameliorates hepatic injury through inhibition of MAPK and NF-kB pathways by up-regulating RKIP expression. International Immunopharmacology, 42, 130–138.

    Article  PubMed  CAS  Google Scholar 

  276. Wei, J., Huang, Q., Bai, F., Lin, J., Nie, J., Lu, S., Lu, C., Huang, R., Lu, Z., & Lin, X. (2017). Didymin induces apoptosis through mitochondrial dysfunction and up-regulation of RKIP in human hepatoma cells. Chemical & Biological Interactions, 261, 118–126.

    Article  CAS  Google Scholar 

  277. Hu, C. J., Zhou, L., & Cai, Y. (2014). Dihydroartemisinin induces apoptosis of cervical cancer cells via upregulation of RKIP and downregulation of bcl-2. Cancer Biology & Therapeutics, 15, 279–288.

    Article  CAS  Google Scholar 

  278. Kim, S. O., & Kim, M. R. (2013). (-)-Epigallocatechin 3-gallate inhibits invasion by inducing the expression of Raf kinase inhibitor protein in AsPC‑1 human pancreatic adenocarcinoma cells through the modulation of histone deacetylase activity. International Journal of Oncology, 42, 349–358.

    Article  PubMed  Google Scholar 

  279. Hsu, Y. L., Chen, C. Y., Lin, I. P., Tsai, E. M., Kuo, P. L., & Hou, M. F. (2012). 4-Shogaol, an active constituent of dietary ginger, inhibits metastasis of MDA-MB-231 human breast adenocarcinoma cells by decreasing the repression of NF-ΰB/Snail on RKIP. Journal of Agricultural & Food Chemistry, 60, 852–861.

    Article  CAS  Google Scholar 

  280. Eves, E. M., Shapiro, P., Naik, K., Klein, U. R., Trakul, N., & Rosner, M. R. (2006). Raf kinase inhibitory protein regulates aurora B kinase and the spindle checkpoint. Molecular Cell, 23, 561–574.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  281. Ohtsuka, T., Buchsbaum, D., Oliver, P., Makhija, S., Kimberly, R., & Zhou, T. (2003). Synergistic induction of tumor cell apoptosis by death receptor antibody and chemotherapy agent through JNK/p38 and mitochondrial death pathway. Oncogene, 22, 2034–2044.

    Article  PubMed  CAS  Google Scholar 

  282. Ohtsuka, T., & Zhou, T. (2002). Bisindolylmaleimide VIII enhances DR5-mediated apoptosis through the MKK4/JNK/p38 kinase and the mitochondrial pathways. Journal of Biological Chemistry, 277, 29294–29303.

    Article  PubMed  CAS  Google Scholar 

  283. Fernandes, B. F., Di, C. S., Neto, B. R., Maloney, S., Martins, C., Castiglione, E., Isenberg, J., Abourbih, D., Antecka, E., & Burnier, M. N., Jr. (2011). Imatinib mesylate alters the expression of genes related to disease progression in an animal model of uveal melanoma. Analytical Cellular Pathology (Amst), 34, 123–130.

    Article  PubMed  CAS  Google Scholar 

  284. Whitnall, M., Howard, J., Ponka, P., & Richardson, D. R. (2006). A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics. Proceedings of the National Academy of Science. U. S. A., 103, 14901–14906.

    Article  CAS  Google Scholar 

  285. Zhou, X., Yang, X. Y., & Popescu, N. C. (2010). Synergistic antineoplastic effect of DLC1 tumor suppressor protein and histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), on prostate and liver cancer cells: Perspectives for therapeutics. International Journal of Oncology, 36, 999–1005.

    PubMed  CAS  Google Scholar 

  286. Zhou, X., Yang, X. Y., & Popescu, N. C. (2012). Preclinical evaluation of combined antineoplastic effect of DLC1 tumor suppressor protein and suberoylanilide hydroxamic acid on prostate cancer cells. Biochemical Biophysical Research Communications, 420, 325–330.

    Article  PubMed  CAS  Google Scholar 

  287. Kim, T. Y., Kim, I. S., Jong, H. S., Lee, J. W., Kim, T. Y., Jung, M., & Bang, Y. J. (2008). Transcriptional induction of DLC-1 gene through Sp1 sites by histone deacetylase inhibitors in gastric cancer cells. Experimental Molecular Medicine, 40, 639–646.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by grants R21-CA235092 (NCI) and W81XWH-20-BCRP-BTA12-2 (DOD) to I.H.G. and by the P30-CA016056 (NCI) Comprehensive Cancer Center grant.

Author information

Authors and Affiliations

Authors

Contributions

This manuscript was written and edited by the author.

Corresponding author

Correspondence to Irwin H. Gelman.

Ethics declarations

Ethical approval

Not applicable.

Informed consent

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelman, I.H. Metastasis suppressor genes in clinical practice: are they druggable?. Cancer Metastasis Rev 42, 1169–1188 (2023). https://doi.org/10.1007/s10555-023-10135-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-023-10135-w

Keywords

Navigation