Skip to main content

Advertisement

Log in

Metastasis suppressor genes and their role in the tumor microenvironment

  • REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The metastatic cascade is a complex process with multiple factors contributing to the seeding and growth of cancer cells at metastatic sites. Within this complex process, several genes have been identified as metastasis suppressors, playing a role in the inhibition of metastasis. Interestingly, some of these genes have been shown to also play a role in regulating the tumor microenvironment. In this review, we comment on the recent developments in the biology of metastasis suppressor genes and their crosstalk with the microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

N/A.

References

  1. Ganesh, K., & Massagué, J. (2021). Targeting metastatic cancer. Nature Medicine, 27(1), 34–44. https://doi.org/10.1038/S41591-020-01195-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Lyden, D., Ghajar, C. M., Correia, A. L., et al. (2022). Metastasis. Cancer Cell, 40(8), 787–791. https://doi.org/10.1016/j.ccell.2022.07.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Massagué, J., & Obenauf, A. C. (2016). Metastatic colonization by circulating tumour cells. Nature, 529(7586), 298–306. https://doi.org/10.1038/nature17038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Sosa, M. S., Bravo-Cordero, J. J. (2020). Understanding the mechanistic features of cancer metastasis. Cancer Reports, 3(1). https://doi.org/10.1002/CNR2.1238

  5. Di Martino, J. S., Akhter, T., & Bravo-Cordero, J. J. (2021). Remodeling the ECM: Implications for metastasis and tumor dormancy. Cancers, 13(19), 4916. https://doi.org/10.3390/CANCERS13194916

    Article  PubMed  PubMed Central  Google Scholar 

  6. Horak, C. E., Lee, J. H., Marshall, J. C., Shreeve, S. M., & Steeg, P. S. (2008). The role of metastasis suppressor genes in metastatic dormancy. APMIS, 116(7–8), 586–601. https://doi.org/10.1111/j.1600-0463.2008.01027.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Cairns, J. (1975). Mutation selection and the natural history of cancer. Nature, 255(5505), 197–200. https://doi.org/10.1038/255197A0

    Article  PubMed  CAS  Google Scholar 

  8. Greaves, M., & Maley, C. C. (2012). Clonal evolution in cancer. Nature, 481(7381), 306. https://doi.org/10.1038/NATURE10762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Rhim, A. D., Mirek, E. T., Aiello, N. M., et al. (2012). EMT and dissemination precede pancreatic tumor formation. Cell, 148(1–2), 349–361. https://doi.org/10.1016/j.cell.2011.11.025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hosseini, H., Obradovic, M. M. S., Hoffmann, M., et al. (2016). Early dissemination seeds metastasis in breast cancer. Nature, 540(7634), 552–558. https://doi.org/10.1038/nature20785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Gupta, P. B., Mani, S., Yang, J., Hartwell, K., & Weinberg, R. A. (2005). The evolving portrait of cancer metastasis. Cold Spring Harb Symp Quant Biol, 70, 291–7. https://doi.org/10.1101/sqb.2005.70.033

    Article  PubMed  CAS  Google Scholar 

  12. Pantel, K., Brakenhoff, R. H., & Brandt, B. (2008). Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nature Reviews Cancer, 8(5), 329–340. https://doi.org/10.1038/nrc2375

    Article  PubMed  CAS  Google Scholar 

  13. Klein, C. A. (2009). Parallel progression of primary tumours and metastases. Nature Reviews Cancer, 9(4), 302–312. https://doi.org/10.1038/nrc2627

    Article  PubMed  CAS  Google Scholar 

  14. Hu, Z., Ding, J., Ma, Z., et al. (2019). Quantitative evidence for early metastatic seeding in colorectal cancer. Nature Genetics, 51(7), 1113–1122. https://doi.org/10.1038/s41588-019-0423-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ray, A., Callaway, M. K., Rodríguez-Merced, N. J., et al., (2022). Stromal architecture directs early dissemination in pancreatic ductal adenocarcinoma. JCI Insight, 7(3). https://doi.org/10.1172/JCI.INSIGHT.150330

  16. Di Martino, J. S., Akhter, T., & Bravo-Cordero, J. J. (2021). Remodeling the ECM: Implications for metastasis and tumor dormancy. Cancers (Basel)., 13(19), 4916. https://doi.org/10.3390/CANCERS13194916

    Article  PubMed  PubMed Central  Google Scholar 

  17. Quail, D. F., & Joyce, J. A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, 19(11), 1423–1437. https://doi.org/10.1038/NM.3394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Friedl, P., & Gilmour, D. (2009). Collective cell migration in morphogenesis, regeneration and cancer. Nature Reviews Molecular Cell Biology, 10(7), 445–457. https://doi.org/10.1038/NRM2720

    Article  PubMed  CAS  Google Scholar 

  19. Mukherjee, A., & Bravo-Cordero, J. J. (2023). Regulation of dormancy during tumor dissemination: The role of the ECM. Cancer Metastasis Reviews., 42, 99–112. https://doi.org/10.1007/s10555-023-10094-2. Published online March 1, 2023.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bravo-Cordero, J. J., Hodgson, L., & Condeelis, J. (2012). Directed cell invasion and migration during metastasis. Current Opinion in Cell Biology, 24(2), 277–283. https://doi.org/10.1016/j.ceb.2011.12.004

    Article  PubMed  CAS  Google Scholar 

  21. Thiery, J. P., Acloque, H., Huang, R. Y. J., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871–890. https://doi.org/10.1016/J.CELL.2009.11.007

    Article  PubMed  CAS  Google Scholar 

  22. Nieto, M. A., Huang, R. Y. Y. J., Jackson, R. A. A., & Thiery, J. P. P. (2016). EMT: 2016. Cell, 166(1), 21–45. https://doi.org/10.1016/J.CELL.2016.06.028

    Article  PubMed  CAS  Google Scholar 

  23. Mondal, C., Gacha-Garay, M. J., Larkin, K. A., et al. (2022). A proliferative to invasive switch is mediated by srGAP1 downregulation through the activation of TGF-β2 signaling. Cell Reports 40 (12). https://doi.org/10.1016/J.CELREP.2022.111358/ATTACHMENT/AD571673-CC1F-4AC5-9309-522AAC0B5913/MMC2

  24. Mondal, C., Di Martino, J. S., & Bravo-Cordero, J. J. (2021). Actin dynamics during tumor cell dissemination. International Review of Cell and Molecular Biology, 360, 65–98. https://doi.org/10.1016/BS.IRCMB.2020.09.004

    Article  PubMed  CAS  Google Scholar 

  25. Gligorijevic, B., Wyckoff, J., Yamaguchi, H., Wang, Y., Roussos, E. T., & Condeelis, J. (2012). N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors. Journal of Cell Science, 125(Pt 3), 724–734. https://doi.org/10.1242/JCS.092726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sharma, V. P., Eddy, R., Entenberg, D., Kai, M., Gertler, F. B., & Condeelis, J. (2013). Tks5 and SHIP2 regulate invadopodium maturation, but not initiation, in breast carcinoma cells. Current Biology, 23(21), 2079–2089. https://doi.org/10.1016/J.CUB.2013.08.044

    Article  PubMed  CAS  Google Scholar 

  27. Oser, M., & Condeelis, J. (2009). The cofilin activity cycle in lamellipodia and invadopodia. Journal of Cellular Biochemistry, 108(6), 1252. https://doi.org/10.1002/JCB.22372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Oser, M., Yamaguchi, H., Mader, C. C., et al. (2009). Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation. Journal of Cell Biology, 186(4), 571–587. https://doi.org/10.1083/JCB.200812176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Risson, E., Nobre, A. R., Maguer-Satta, V., & Aguirre-Ghiso, J. A. (2020). The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nature Cancer., 1(7), 672–680. https://doi.org/10.1038/s43018-020-0088-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Sosa, M. S., Bragado, P., & Aguirre-Ghiso, J. A. (2014). Mechanisms of disseminated cancer cell dormancy: An awakening field. Nature Reviews Cancer, 14(9), 611–622. https://doi.org/10.1038/NRC3793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sosa, M. S., Bragado, P., & Aguirre-Ghiso, J. A. (2014). Mechanisms of disseminated cancer cell dormancy: An awakening field. Nature Reviews Cancer, 14(9), 611–622. https://doi.org/10.1038/nrc3793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Giancotti, F. G. (2013). Mechanisms governing metastatic dormancy and reactivation. Cell, 155(4), 750. https://doi.org/10.1016/j.cell.2013.10.029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Butturini, E., de Prati, A. C., Boriero, D., & Mariotto, S. (2019). Tumor dormancy and interplay with hypoxic tumor microenvironment. International Journal of Molecular Sciences., 20(17), 4305. https://doi.org/10.3390/IJMS20174305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ferrer, A., Roser, C. T., El-Far, M. H., et al. (2020). Hypoxia-mediated changes in bone marrow microenvironment in breast cancer dormancy. Cancer Letters, 488, 9–17. https://doi.org/10.1016/J.CANLET.2020.05.026

    Article  PubMed  CAS  Google Scholar 

  35. Ghajar, C. M., Peinado, H., Mori, H., et al. (2013). The perivascular niche regulates breast tumour dormancy. Nature Cell Biology, 15(7), 807–817. https://doi.org/10.1038/NCB2767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Indraccolo, S., Minuzzo, S., Masiero, M., et al. (2009). Cross-talk between tumor and endothelial cells involving the Notch3-Dll4 interaction marks escape from tumor dormancy. Cancer Research, 69(4), 1314–1323. https://doi.org/10.1158/0008-5472.CAN-08-2791

    Article  PubMed  CAS  Google Scholar 

  37. Bragado, P., Estrada, Y., Parikh, F., et al. (2013). TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nature Cell Biology, 15(11), 1351–1361. https://doi.org/10.1038/NCB2861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Fane, M. E., Chhabra, Y., Alicea, G. M., et al. (2022). Stromal changes in the aged lung induce an emergence from melanoma dormancy. Nature, 606(7913), 396–405. https://doi.org/10.1038/S41586-022-04774-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Di Martino, J. S., Akhter, T., & Bravo-Cordero, J. J. (2021). Remodeling the ecm: Implications for metastasis and tumor dormancy. Cancers (Basel)., 13(19), 4916. https://doi.org/10.3390/cancers13194916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Di Martino, J. S., Nobre, A. R., Mondal, C., et al. (2022). A tumor-derived type III collagen-rich ECM niche regulates tumor cell dormancy. Nature Cancer., 3(1), 90–107. https://doi.org/10.1038/S43018-021-00291-9

    Article  PubMed  Google Scholar 

  41. Dasgupta, A., Lim, A. R., & Ghajar, C. M. (2017). Circulating and disseminated tumor cells: Harbingers or initiators of metastasis? Molecular Oncology, 11(1), 40. https://doi.org/10.1002/1878-0261.12022

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kang, Y., & Pantel, K. (2013). Tumor cell dissemination: Emerging biological insights from animal models and cancer patients. Cancer Cell, 23(5), 573. https://doi.org/10.1016/J.CCR.2013.04.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sosa, M. S., Parikh, F., Maia, A. G., et al. (2015). NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes. Nature Communications, 6. https://doi.org/10.1038/NCOMMS7170

  44. Faubert, B., Solmonson, A., DeBerardinis, R. J. (2020). Metabolic reprogramming and cancer progression. Science (80- ), 368(6487). https://doi.org/10.1126/SCIENCE.AAW5473/ASSET/043E2E47-0328-47B9-927A-622370C71FB7/ASSETS/GRAPHIC/368_AAW5473_F4.JPEG

  45. Lehúede, C., Dupuy, F., Rabinovitch, R., Jones, R. G., & Siegel, P. M. (2016). Metabolic plasticity as a determinant of tumor growth and metastasis. Cancer Research, 76(18), 5201–5208. https://doi.org/10.1158/0008-5472.CAN-16-0266/660578/P/METABOLIC-PLASTICITY-AS-A-DETERMINANT-OF-TUMOR

    Article  PubMed  Google Scholar 

  46. Berger, J. C., Vander Griend, D. J., Robinson, V. L., Hickson, J. A., & Rinker-Schaeffer, C. W. (2005). Metastasis suppressor genes: From gene identification to protein function and regulation. Cancer Biology & Therapy, 4(8), 805–812. https://doi.org/10.4161/cbt.4.8.1865

    Article  CAS  Google Scholar 

  47. Stafford, L. J., Vaidya, K. S., & Welch, D. R. (2008). Metastasis suppressors genes in cancer. International Journal of Biochemistry & Cell Biology, 40(5), 874–891. https://doi.org/10.1016/j.biocel.2007.12.016

    Article  CAS  Google Scholar 

  48. Hurst, D. R., & Welch, D. R. (2011). Metastasis suppressor genes At the interface between the environment and tumor cell growth. Vol. 286. Elsevier Inc. https://doi.org/10.1016/B978-0-12-385859-7.00003-3

    Book  Google Scholar 

  49. Cook, L. M., Hurst, D. R., & Welch, D. R. (2011). Metastasis suppressors and the tumor microenvironment. Seminars in Cancer Biology, 21(2), 113–122. https://doi.org/10.1016/j.semcancer.2010.12.005

    Article  PubMed  CAS  Google Scholar 

  50. Steeg, P. S., Bevilacqua, G., Kopper, L., et al. (1988). Evidence for a novel gene associated with low tumor metastatic potential. Journal of the National Cancer Institute, 80(3), 200–204. https://doi.org/10.1093/JNCI/80.3.200

    Article  PubMed  CAS  Google Scholar 

  51. Hur, J., Il, Choi J., Lee, H., et al. (2016). CD82/KAI1 maintains the dormancy of long-term hematopoietic stem cells through interaction with DARC-expressing macrophages. Cell Stem Cell., 18(4), 508–521. https://doi.org/10.1016/J.STEM.2016.01.013

    Article  PubMed  CAS  Google Scholar 

  52. Lee, J. H., Miele, M. E., Hicks, D. J., et al. (1996). KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. Journal of the National Cancer Institute, 88(23), 1731–1737. https://doi.org/10.1093/jnci/88.23.1731

    Article  PubMed  CAS  Google Scholar 

  53. Ly, T., Harihar, S., & Welch, D. R. (2020). KISS1 in metastatic cancer research and treatment: Potential and paradoxes. Cancer and Metastasis Reviews, 39(3), 739–754. https://doi.org/10.1007/s10555-020-09868-9

    Article  PubMed  Google Scholar 

  54. Harihar, S., Ray, S., Narayanan, S., Santhoshkumar, A., Ly, T., & Welch, D. R. (2020). Role of the tumor microenvironment in regulating the anti-metastatic effect of KISS1. Clinical & Experimental Metastasis, 37(2), 209–223. https://doi.org/10.1007/s10585-020-10030-6

    Article  Google Scholar 

  55. Jiang, Y., Berk, M., Singh, L. S., et al. (2005). KiSS1 suppresses metastasis in human ovarian cancer via inhibition of protein kinase C alpha. Clinical & Experimental Metastasis, 22(5), 369–376. https://doi.org/10.1007/S10585-005-8186-4

    Article  CAS  Google Scholar 

  56. McNally, L. R., Welch, D. R., Beck, B. H., et al. (2010). KISS1 over-expression suppresses metastasis of pancreatic adenocarcinoma in a xenograft mouse model. Clinical & Experimental Metastasis, 27(8), 591–600. https://doi.org/10.1007/S10585-010-9349-5

    Article  CAS  Google Scholar 

  57. Nash, K. T., Phadke, P. A., Navenot, J. M., et al. (2007). Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. Journal of the National Cancer Institute, 99(4), 309–321. https://doi.org/10.1093/JNCI/DJK053

    Article  PubMed  CAS  Google Scholar 

  58. Buxton, I. L. O., & Yokdang, N. (2011). Extracellular NM23 signaling in breast cancer: Incommodus verum. Cancers (Basel)., 3(3), 2844–2857. https://doi.org/10.3390/cancers3032844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Knopeke, M. T., Ritschdorff, E. T., Clark, R., et al. (2011). Building on the foundation of daring hypotheses: Using the MKK4 metastasis suppressor to develop models of dormancy and metastatic colonization. FEBS Letters, 585(20), 3159–3165. https://doi.org/10.1016/J.FEBSLET.2011.09.007

    Article  PubMed  CAS  Google Scholar 

  60. Aguirre-Ghiso, J. A., Estrada, Y., Liu, D., & Ossowski, L. (2003). ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Research, 63(7), 1684–1695. https://doi.org/10.1016/J.UROLONC.2003.12.012

    Article  PubMed  CAS  Google Scholar 

  61. Ranganathan, A. C., Adam, A. P., Zhang, L., & Aguirre-Ghiso, J. A. (2006). Tumor cell dormancy induced by p38 SAPK and ER-stress signaling: An adaptive advantage for metastatic cells? Growth cessation and adaptation to stress as a selective advantage for multi-cellular organisms. Cancer Biology & Therapy, 5(7), 729–735.

    Article  CAS  Google Scholar 

  62. Fu, Z., Kitagawa, Y., Shen, R., et al. (2006). Metastasis suppressor gene Raf kinase inhibitor protein (RKIP) is a novel prognostic marker in prostate cancer. Prostate, 66(3), 248–256. https://doi.org/10.1002/PROS.20319

    Article  PubMed  CAS  Google Scholar 

  63. Schoentgen, F., & Jonic, S. (2020). PEBP1/RKIP behavior: A mirror of actin-membrane organization. Cellular and Molecular Life Sciences, 77(5), 859–874. https://doi.org/10.1007/S00018-020-03455-5

    Article  PubMed  CAS  Google Scholar 

  64. Sakurai-Yageta, M., Recchi, C., Le Dez, G., et al. (2008). The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA. Journal of Cell Biology, 181(6), 985–998. https://doi.org/10.1083/JCB.200709076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Bravo-Cordero, J. J., Cordani, M., Soriano, S. F., et al. (2016). A novel high-content analysis tool reveals Rab8-driven cytoskeletal reorganization through Rho GTPases, calpain and MT1-MMP. Journal of Cell Science, 129(8), 1734–1749. https://doi.org/10.1242/JCS.174920

    Article  PubMed  CAS  Google Scholar 

  66. Yun, J., Frankenberger, C. A., Kuo, W. L., et al. (2011). Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. EMBO Journal, 30(21), 4500. https://doi.org/10.1038/EMBOJ.2011.312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Datar, I., Feng, J., Qiu, X., et al. (2015). RKIP inhibits local breast cancer invasion by antagonizing the transcriptional activation of MMP13. PLoS ONE, 10(8), e0134494. https://doi.org/10.1371/JOURNAL.PONE.0134494

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sica, A., Larghi, P., Mancino, A., et al. (2008). Macrophage polarization in tumour progression. Seminars in Cancer Biology, 18(5), 349–355. https://doi.org/10.1016/j.semcancer.2008.03.004

    Article  PubMed  CAS  Google Scholar 

  69. Lin, E. Y., & Pollard, J. W. (2004). Macrophages: Modulators of breast cancer progression. Novartis Foundation Symposium, 256, 158–172. https://doi.org/10.1002/0470856734.CH12

    Article  PubMed  CAS  Google Scholar 

  70. Kalpana, G., Figy, C., Feng, J., et al. (2021). The RhoA dependent anti-metastatic function of RKIP in breast cancer. Scientific Reports 11(1):17455. https://doi.org/10.1038/S41598-021-96709-6

  71. Bravo-Cordero, J. J., Hodgson, L., & Condeelis, J. (2012). Directed cell invasion and migration during metastasis. Current Opinion in Cell Biology, 24(2), 277–283. https://doi.org/10.1016/J.CEB.2011.12.004

    Article  PubMed  CAS  Google Scholar 

  72. Vennin, C., Herrmann, D., Lucas, M. C., & Timpson, P. (2016). Intravital imaging reveals new ancillary mechanisms co-opted by cancer cells to drive tumor progression. F1000Research., 5, 892. https://doi.org/10.12688/F1000RESEARCH.8090.1

    Article  Google Scholar 

  73. Linde, N., Casanova-Acebes, M., Sosa, M. S., et al. (2018). Macrophages orchestrate breast cancer early dissemination and metastasis. Nature Communications, 9(1). https://doi.org/10.1038/S41467-017-02481-5

  74. Borriello, L., Coste, A., Traub, B., et al. (2022). Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells. Nature Communications. 13(1). https://doi.org/10.1038/S41467-022-28076-3

  75. Lawson, C. D., & Ridley, A. J. (2018). Rho GTPase signaling complexes in cell migration and invasion. Journal of Cell Biology, 217(2), 447–457. https://doi.org/10.1083/JCB.201612069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Ridley, A. J. (2006). Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends in Cell Biology, 16(10), 522–529. https://doi.org/10.1016/J.TCB.2006.08.006

    Article  PubMed  CAS  Google Scholar 

  77. Wu, Y., Moissoglu, K., Wang, H., et al. (2009). Src phosphorylation of RhoGDI2 regulates its metastasis suppressor function. Proceedings of the National Academy of Science of the United States of America, 106(14), 5807. https://doi.org/10.1073/PNAS.0810094106

    Article  CAS  Google Scholar 

  78. Harding, M. A., & Theodorescu, D. (2007). RhoGDI2: A new metastasis suppressor gene: Discovery and clinical translation. Urologic Oncology, 25(5), 401–406. https://doi.org/10.1016/J.UROLONC.2007.05.006

    Article  PubMed  CAS  Google Scholar 

  79. Moissoglu, K., McRoberts, K. S., Meier, J. A., Theodorescu, D., & Schwartz, M. A. (2009). Rho GDP dissociation inhibitor 2 suppresses metastasis via unconventional regulation of RhoGTPases. Cancer Research, 69(7), 2838–2844. https://doi.org/10.1158/0008-5472.CAN-08-1397/654444/P/RHO-GDP-DISSOCIATION-INHIBITOR-2-SUPPRESSES

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Griner, E. M., Dancik, G. M., Costello, J. C., et al. (2015). RhoC is an unexpected target of RhoGDI2 in prevention of lung colonization of bladder cancer. Molecular Cancer Research, 13(3), 483. https://doi.org/10.1158/1541-7786.MCR-14-0420

    Article  PubMed  CAS  Google Scholar 

  81. Naba, A., Clauser, K. R., Ding, H., Whittaker, C. A., Carr, S. A., & Hynes, R. O. (2016). The extracellular matrix: Tools and insights for the “omics” era. Matrix Biology, 49, 10–24. https://doi.org/10.1016/J.MATBIO.2015.06.003

    Article  PubMed  CAS  Google Scholar 

  82. Hynes, R. O. (2009). The extracellular matrix: Not just pretty fibrils. Science, 326(5957), 1216–1219. https://doi.org/10.1126/SCIENCE.1176009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Said, N., Sanchez-Carbayo, M., Smith, S. C., & Theodorescu, D. (2012). RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration. The Journal of Clinical Investigation, 122(4), 1503–1518. https://doi.org/10.1172/JCI61392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Ahmed, M., Sottnik, J. L., Dancik, G. M., et al. (2016). An osteopontin/CD44 axis in RhoGDI2-mediated metastasis suppression. Cancer Cell, 30(3), 432–443. https://doi.org/10.1016/J.CCELL.2016.08.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Boyerinas, B., Zafrir, M., Yesilkanal, A. E., Price, T. T., Hyjek, E. M., & Sipkins, D. A. (2013). Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy. Blood, 121(24), 4821–4831. https://doi.org/10.1182/BLOOD-2012-12-475483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Zimmermann, R. C., & Welch, D. R. (2020). BRMS1: A multi-functional signaling molecule metastasis. Cancer and Metastasis Reviews, 39(3), 755. https://doi.org/10.1007/S10555-020-09871-0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Swagata Basu for critical reading and editing of the manuscript.

Funding

This work was supported by an NCI R01 (CA244780), NCI R03 (CA270679), NCI R61 (CA278402) the Irma T. Hirschl Trust, the Emerging Leader Award from the Mark Foundation (to J.J.B.C), and the Tisch Cancer Institute NIH Cancer Center grant (P30 CA196521). C.M. received support from the Ramon Areces Foundation.

Author information

Authors and Affiliations

Authors

Contributions

CM and JJBC wrote and edit the manuscript. CM made the figures.

Corresponding author

Correspondence to Jose Javier Bravo-Cordero.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

N/A.

Ethical approval

N/A.

Informed consent

N/A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Megino-Luque, C., Bravo-Cordero, J.J. Metastasis suppressor genes and their role in the tumor microenvironment. Cancer Metastasis Rev 42, 1147–1154 (2023). https://doi.org/10.1007/s10555-023-10155-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-023-10155-6

Keywords

Navigation