Skip to main content

Advertisement

Log in

A perspective on the metastasis suppressor field

  • COMMENTARY
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Metastasis is the leading cause of cancer patient mortality. Metastasis suppressors are genes that, upon reexpression in metastatic tumor cells to levels observed in their nonmetastatic counterparts, significantly reduce metastasis without affecting the growth of the primary tumor. Analysis of > 30 metastasis suppressors revealed complex mechanisms of action that include multiple signaling pathways, transcriptional patterns, posttranscriptional regulatory mechanisms, and potential contributions of genomic stability. Clinical testing of strategies to re-establish a validated metastasis suppressor pathway in tumors is best directed to the adjuvant setting, with the goal of inhibiting the outgrowth of occult micrometastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leone, A., Flatow, U., King, C. R., Sandeen, M. A., Margulies, I. M. K., Liotta, L. A., et al. (1991). Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm23-transfected melanoma cells. Cell, 65, 25–35. https://doi.org/10.1016/0092-8674(91)90404-M

    Article  CAS  PubMed  Google Scholar 

  2. Steeg, P. S., Bevilacqua, G., Kopper, L., Thorgeirsson, U. P., Talmadge, J. E., Liotta, L. A., et al. (1988). Evidence for a novel gene associated with low tumor metastatic potential. J. Nat′l. Cancer Inst., 80, 200–204. https://doi.org/10.1093/jnci/80.3.200

    Article  CAS  Google Scholar 

  3. Hurst, D. R., Edmonds, M. D., Scott, G. K., Benz, C. C., Vaidya, K. S., & Welch, D. R. (2009). Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Research, 69(4), 1279–1283. https://doi.org/10.1158/0008-5472.CAN-08-3559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Geleta, B. R., Tout, F., Lim, S. C., Sahni, S., Jansson, P. J., Apte, M. V., et al. (2022). Targeting Wnt/tenascin C-mediated cross talk between pancreatic cancer cells and stellate cells via activation of the metastasis suppressor NDRG1. Journal of Biological Chemistry, 298(3). https://doi.org/10.1016/j.jbc.2022.101608

  5. Dammai, V., Adryan, B., Lavenburg, K. R., & Hsu, T. (2003). Drosophila awd, the homolog of human nm23, regulates FGF receptor levels and functions synergistically with shi/dynamin during tracheal development. Genes & Development, 17(22), 2812–2824. https://doi.org/10.1101/gad.1096903

    Article  CAS  Google Scholar 

  6. Boissan, M., Montagnac, G., Shen, Q., Griparic, L., Guitton, J., Romao, M., et al. (2014). Membrane trafficking. Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling. Science, 344(6191), 1510–1515. https://doi.org/10.1126/science.1253768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khan, I., Gril, B., & Steeg, P. S. (2019). Metastasis suppressors NME1 and NME2 promote dynamin 2 oligomerization and regulate tumor cell endocytosis, motility, and metastasis. Cancer Research, 79(18), 4689–4702. https://doi.org/10.1158/0008-5472.CAN-19-0492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lodillinsky, C., Fuhrmann, L., Irondelle, M., Pylypenko, O., Li, X. Y., Bonsang-Kitzis, H., et al. (2021). Metastasis-suppressor NME1 controls the invasive switch of breast cancer by regulating MT1-MMP surface clearance. Oncogene, 40(23), 4019–4032. https://doi.org/10.1038/s41388-021-01826-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Menezes, S. V., Kovacevic, Z., & Richardson, D. R. (2019). The metastasis suppressor NDRG1 down-regulates the epidermal growth factor receptor via a lysosomal mechanism by up-regulating mitogen-inducible gene 6. Journal of Biological Chemistry, 294(11), 4045–4064. https://doi.org/10.1074/jbc.RA118.006279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ma, L., Reinhardt, F., Pan, E., Soutschek, J., Bhat, B., Marcusson, E. G., et al. (2010). Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotechnology, 28(4), 341–U367. https://doi.org/10.1038/nbt.1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Palmieri, D., Halverson, D. O., Ouatas, T., Horak, C. E., Salerno, M., Johnson, J., et al. (2005). Medroxyprogesterone acetate elevation of Nm23-H1 metastasis suppressor expression in hormone receptor-negative breast cancer. J Natl Cancer Inst, 97(9), 632–642. https://doi.org/10.1093/jnci/dji111

    Article  CAS  PubMed  Google Scholar 

  12. Miller, K. D., Althouse, S. K., Nabell, L., Rugo, H., Carey, L., Kimmick, G., et al. (2014). A phase II study of medroxyprogesterone acetate in patients with hormone receptor negative metastatic breast cancer: Translational breast cancer research consortium trial 007. Breast Cancer Research and Treatment, 148(1), 99–106. https://doi.org/10.1007/s10549-014-3131-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Park, K. C., Paluncic, J., Kovacevic, Z., & Richardson, D. R. (2020). Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer. Free Radical Biology and Medicine, 157, 154–175. https://doi.org/10.1016/j.freeradbiomed.2019.05.020

    Article  CAS  PubMed  Google Scholar 

  14. Marshall, J. C. A., Collins, J. W., Nakayama, J., Horak, C. E., Liewehr, D. J., Steinberg, S. M., et al. (2012). Effect of inhibition of the lysophosphatidic acid receptor 1 on metastasis and metastatic dormancy in breast cancer. Journal of the National Cancer Institute, 104(17), 1306–1319. https://doi.org/10.1093/jnci/djs319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brooks, D., Zimmer, A., Wakefield, L., Lyle, T., Difilippantonio, S., Tucci, F., et al. (2018). Limited fibrosis accompanies triple-negative breast cancer metastasis in multiple model systems and is not a preventive target. Oncotarget, 9(34). https://doi.org/10.18632/oncotarget.25231

  16. Khan, I., Gril, B., Hoshino, A., Yang, H. H., Lee, M. P., Difilippantonio, S., et al. (2022). Metastasis suppressor NME1 in exosomes or liposomes conveys motility and migration inhibition in breast cancer model systems. Clinical & Experimental Metastasis, 39(5), 815–831. https://doi.org/10.1007/s10585-022-10182-7

    Article  CAS  Google Scholar 

  17. Ahmed, M., Lai, T. H., Kim, W., & Kim, D. R. (2021). A functional network model of the metastasis suppressor PEBP1/RKIP and its regulators in breast cancer cells. Cancers, 13(23). https://doi.org/10.3390/cancers13236098

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia S. Steeg.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Steeg, P.S. A perspective on the metastasis suppressor field. Cancer Metastasis Rev 42, 1061–1063 (2023). https://doi.org/10.1007/s10555-023-10131-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-023-10131-0

Keywords

Navigation