Skip to main content

Advertisement

Log in

KISS1 metastasis suppressor in tumor dormancy: a potential therapeutic target for metastatic cancers?

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Present therapeutic approaches do not effectively target metastatic cancers, often limited by their inability to eliminate already-seeded non-proliferative, growth-arrested, or therapy-resistant tumor cells. Devising effective approaches targeting dormant tumor cells has been a focus of cancer clinicians for decades. However, progress has been limited due to limited understanding of the tumor dormancy process. Studies on tumor dormancy have picked up pace and have resulted in the identification of several regulators. This review focuses on KISS1, a metastasis suppressor gene that suppresses metastasis by keeping tumor cells in a state of dormancy at ectopic sites. The review explores mechanistic insights of KISS1 and discusses its potential application as a therapeutic against metastatic cancers by eliminating quiescent cells or inducing long-term dormancy in tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Welch, D. R., & Hurst, D. R. (2019). Defining the hallmarks of metastasis. Cancer Research, 79(12), 3011–3027. https://doi.org/10.1158/0008-5472.CAN-19-0458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fidler, I. J. (1970). Metastasis: Quantitative analysis of distribution and fate of tumor emboli labeled with 125l–5-lodo-2’-deoxyuridine. Journal of the National Cancer Institute, 45(4), 773–782. https://doi.org/10.1093/jnci/45.4.773

    Article  CAS  PubMed  Google Scholar 

  3. Moore, N., & Lyle, S. (2011). Quiescent, slow-cycling stem cell populations in cancer: A review of the evidence and discussion of significance. Journal of Oncology, 2011, 1–11. https://doi.org/10.1155/2011/396076

    Article  CAS  Google Scholar 

  4. Recasens, A., & Munoz, L. (2019). Targeting cancer cell dormancy. Trends in Pharmacological Sciences, 40(2), 128–141. https://doi.org/10.1016/j.tips.2018.12.004

    Article  CAS  PubMed  Google Scholar 

  5. Tang, D. G. (2012). Understanding cancer stem cell heterogeneity and plasticity. Cell Research, 22(3), 457–472. https://doi.org/10.1038/cr.2012.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Phan, T. G., & Croucher, P. I. (2020). The dormant cancer cell life cycle. Nature Reviews Cancer, 20(7), 398–411. https://doi.org/10.1038/s41568-020-0263-0

    Article  CAS  PubMed  Google Scholar 

  7. Davis, J. E. J., Kirk, J., Ji, Y., & Tang, D. G. (2019). Tumor dormancy and slow-cycling cancer cells. Advances in Experimental Medicine and Biology, 1164, 199–206. https://doi.org/10.1007/978-3-030-22254-3_15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bragado, P., Sosa, M. S., Keely, P., Condeelis, J., & Aguirre-Ghiso, J. A. (2012). Microenvironments dictating tumor cell dormancy. Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer, 195, 25–39. https://doi.org/10.1007/978-3-642-28160-0_3

    Article  PubMed  Google Scholar 

  9. Gomis, R. R., & Gawrzak, S. (2017). Tumor cell dormancy. Molecular oncology, 11(1), 62–78. https://doi.org/10.1016/j.molonc.2016.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hedley, B. D., Winquist, E., & Chambers, A. F. (2004). Therapeutic targets for antimetastatic therapy. Expert opinion on therapeutic targets, 8(6), 527–536. https://doi.org/10.1517/14728222.8.6.527

    Article  CAS  PubMed  Google Scholar 

  11. Goss, P. E., & Chambers, A. F. (2010). Does tumour dormancy offer a therapeutic target? Nature reviews. Cancer, 10(12), 871–877. https://doi.org/10.1038/nrc2933

    Article  CAS  PubMed  Google Scholar 

  12. Neophytou, C. M., Kyriakou, T.-C., & Papageorgis, P. (2019). Mechanisms of metastatic tumor dormancy and implications for cancer therapy. International journal of molecular sciences, 20(24). https://doi.org/10.3390/ijms20246158

  13. Saleh, T., Bloukh, S., Carpenter, V. J., Alwohoush, E., Bakeer, J., Darwish, S., … Gewirtz, D. A. (2020). Therapy-induced senescence: An “old” friend becomes the enemy. Cancers, 12(4). https://doi.org/10.3390/cancers12040822

  14. Neophytou, C., Boutsikos, P., & Papageorgis, P. (2018). Molecular mechanisms and emerging therapeutic targets of triple-negative breast cancer metastasis. Frontiers in oncology, 8, 31. https://doi.org/10.3389/fonc.2018.00031

    Article  PubMed  PubMed Central  Google Scholar 

  15. Iiizumi, M., Liu, W., Pai, S. K., Furuta, E., & Watabe, K. (2008). Drug development against metastasis-related genes and their pathways: A rationale for cancer therapy. Biochimica et biophysica acta, 1786(2), 87–104. https://doi.org/10.1016/j.bbcan.2008.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hurst, D. R., & Welch, D. R. (2011). Metastasis suppressor genes. At the interface between the environment and tumor cell growth. International Review of Cell and Molecular Biology, 286, 107–180. https://doi.org/10.1016/B978-0-12-385859-7.00003-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steeg, P. S., Ouatas, T., Halverson, D., Palmieri, D., & Salerno, M. (2003). Metastasis suppressor genes: Basic biology and potential clinical use. Clinical breast cancer, 4(1), 51–62. https://doi.org/10.3816/cbc.2003.n.012

    Article  CAS  PubMed  Google Scholar 

  18. Smith, S. C., & Theodorescu, D. (2009). Learning therapeutic lessons from metastasis suppressor proteins. Nature Reviews Cancer, 9, 253–264. https://doi.org/10.1038/nrc2594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Park, K. C., Paluncic, J., Kovacevic, Z., & Richardson, D. R. (2020). Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer. Free Radical Biology and Medicine, 157, 154–175. https://doi.org/10.1016/j.freeradbiomed.2019.05.020

    Article  CAS  PubMed  Google Scholar 

  20. Kauffman, E. C., Robinson, V. L., Stadler, W. M., Sokoloff, M. H., & Rinker-Schaeffer, C. W. (2003). Metastasis suppression: The evolving role of metastasis suppressor genes for regulating cancer cell growth at the secondary site. Journal of Urology, 169(3), 1122–1133. https://doi.org/10.1097/01.ju.0000051580.89109.4b

    Article  PubMed  Google Scholar 

  21. Bohl, C. R., Harihar, S., Denning, W. L., Sharma, R., & Welch, D. R. (2014). Metastasis suppressors in breast cancers: Mechanistic insights and clinical potential. Journal of Molecular Medicine, 92(1), 13–30. https://doi.org/10.1007/s00109-013-1109-y

    Article  CAS  PubMed  Google Scholar 

  22. Beck, B. H., & Welch, D. R. (2010). The KISS1 metastasis suppressor: A good night kiss for disseminated cancer cells. European Journal of Cancer, 46(7), 1283–1289. https://doi.org/10.1016/j.ejca.2010.02.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, X., Xu, Z., & Wang, Y. (2011). Recent advances in breast cancer metastasis suppressor 1. The International journal of biological markers, 26(1), 1–8. https://doi.org/10.5301/jbm.2011.6267

    Article  PubMed  Google Scholar 

  24. Hedley, B. D., & Chambers, A. F. (2009). Tumor dormancy and metastasis. Advances in cancer research, 102, 67–101. https://doi.org/10.1016/S0065-230X(09)02003-X

    Article  CAS  PubMed  Google Scholar 

  25. Osisami, M., & Keller, E. T. (2013). Mechanisms of metastatic tumor dormancy. Journal of clinical medicine, 2(3), 136–150. https://doi.org/10.3390/jcm2030136

    Article  PubMed  PubMed Central  Google Scholar 

  26. Horak, C. E., Lee, J. H., Marshall, J. C., Shreeve, S. M., & Steeg, P. S. (2008). The role of metastasis suppressor genes in metastatic dormancy. APMIS, 116(7–8), 586–601. https://doi.org/10.1111/j.1600-0463.2008.01027.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harihar, S., Ray, S., Narayanan, S., Santhoshkumar, A., Ly, T., & Welch, D. R. (2020). Role of the tumor microenvironment in regulating the anti-metastatic effect of KISS1. Clinical and Experimental Metastasis, 37(2). https://doi.org/10.1007/s10585-020-10030-6

  28. Ly, T., Harihar, S., & Welch, D. R. (2020). KISS1 in metastatic cancer research and treatment: Potential and paradoxes. Cancer and Metastasis Reviews, 39, 739–754. https://doi.org/10.1007/s10555-020-09868-9

    Article  PubMed  Google Scholar 

  29. Crist, S. B., & Ghajar, C. M. (2021). When a house is not a home: A survey of antimetastatic niches and potential mechanisms of disseminated tumor cell suppression. Annual Review of Pathology: Mechanisms of Disease, 16, 409–432. https://doi.org/10.1146/annurev-pathmechdis-012419-032647

    Article  CAS  Google Scholar 

  30. Kang, Y., & Pantel, K. (2013). Tumor cell dissemination: Emerging biological insights from animal models and cancer patients. Cancer Cell, 23(5), 573–581. https://doi.org/10.1016/j.ccr.2013.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wikman, H., Vessella, R., & Pantel, K. (2008). Cancer micrometastasis and tumour dormancy. APMIS : Acta pathologica, microbiologica, et immunologica Scandinavica, 116(7–8), 754–770. https://doi.org/10.1111/j.1600-0463.2008.01033.x

    Article  CAS  PubMed  Google Scholar 

  32. Izraely, S., & Witz, I. P. (2021). Site-specific metastasis: A cooperation between cancer cells and the metastatic microenvironment. International journal of cancer, 148(6), 1308–1322. https://doi.org/10.1002/ijc.33247

    Article  CAS  PubMed  Google Scholar 

  33. Grzelak, C. A., & Ghajar, C. M. (2017). Metastasis “systems” biology: How are macro-environmental signals transmitted into microenvironmental cues for disseminated tumor cells? Current opinion in cell biology, 48, 79–86. https://doi.org/10.1016/j.ceb.2017.06.002

    Article  CAS  PubMed  Google Scholar 

  34. Mirzayans, R., Andrais, B., & Murray, D. (2018). Roles of polyploid/multinucleated giant cancer cells in metastasis and disease relapse following anticancer treatment. Cancers, 10(4). https://doi.org/10.3390/cancers10040118

  35. Sceneay, J., Smyth, M. J., & Möller, A. (2013). The pre-metastatic niche: Finding common ground. Cancer metastasis reviews, 32(3–4), 449–464. https://doi.org/10.1007/s10555-013-9420-1

    Article  CAS  PubMed  Google Scholar 

  36. Liu, Y., & Cao, X. (2016). Characteristics and significance of the pre-metastatic niche. Cancer Cell, 30(5), 668–681. https://doi.org/10.1016/j.ccell.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  37. Aguirre-Ghiso, J. A., & Sosa, M. S. (2018). Emerging topics on disseminated cancer cell dormancy and the paradigm of metastasis. Annual Review of Cancer Biology, 2, 377–393. https://doi.org/10.1146/annurev-cancerbio-030617-050446

    Article  Google Scholar 

  38. Araos, J., Sleeman, J. P., & Garvalov, B. K. (2018). The role of hypoxic signalling in metastasis: Towards translating knowledge of basic biology into novel anti-tumour strategies. Clinical & experimental metastasis, 35(7), 563–599. https://doi.org/10.1007/s10585-018-9930-x

    Article  CAS  Google Scholar 

  39. Butturini, E., Carcereri de Prati, A., Boriero, D., & Mariotto, S. (2019). Tumor dormancy and interplay with hypoxic tumor microenvironment. International journal of molecular sciences, 20(17). https://doi.org/10.3390/ijms20174305

  40. Walker, N. D., Patel, J., Munoz, J. L., Hu, M., Guiro, K., Sinha, G., & Rameshwar, P. (2016). The bone marrow niche in support of breast cancer dormancy. Cancer letters, 380(1), 263–271. https://doi.org/10.1016/j.canlet.2015.10.033

    Article  CAS  PubMed  Google Scholar 

  41. Attaran, S., & Bissell, M. J. (2022). The role of tumor microenvironment and exosomes in dormancy and relapse. Seminars in cancer biology, 78, 35–44. https://doi.org/10.1016/j.semcancer.2021.09.008

    Article  CAS  PubMed  Google Scholar 

  42. Hernández-Barranco, A., Nogués, L., & Peinado, H. (2021). Could extracellular vesicles contribute to generation or awakening of “sleepy” metastatic niches? Frontiers in cell and developmental biology, 9, 625221. https://doi.org/10.3389/fcell.2021.625221

    Article  PubMed  PubMed Central  Google Scholar 

  43. Patel, S. A., Meyer, J. R., Greco, S. J., Corcoran, K. E., Bryan, M., & Rameshwar, P. (2010). Mesenchymal stem cells protect breast cancer cells through regulatory T cells: Role of mesenchymal stem cell-derived TGF-β. The Journal of Immunology, 184(10), 5885–5894. https://doi.org/10.4049/jimmunol.0903143

    Article  CAS  PubMed  Google Scholar 

  44. Roodman, G. D. (2004). Mechanisms of bone metastasis. New England Journal of Medicine, 350(16), 1655–1664. https://doi.org/10.1056/nejmra030831

    Article  CAS  PubMed  Google Scholar 

  45. Psaila, B., & Lyden, D. (2009). The metastatic niche: Adapting the foreign soil. Nature Reviews Cancer, 9, 285–293. https://doi.org/10.1038/nrc2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dianat-Moghadam, H., Azizi, M., Eslami-S, Z., Cortés-Hernández, L. E., Heidarifard, M., Nouri, M., & Alix-Panabières, C. (2020). The role of circulating tumor cells in the metastatic cascade: Biology, technical challenges, and clinical relevance. Cancers, 12(4). https://doi.org/10.3390/cancers12040867

  47. Joosse, S. A., Gorges, T. M., & Pantel, K. (2015). Biology, detection, and clinical implications of circulating tumor cells. EMBO molecular medicine, 7(1), 1–11. https://doi.org/10.15252/emmm.201303698

    Article  CAS  PubMed  Google Scholar 

  48. Ramamoorthi, G., Kodumudi, K., Gallen, C., Zachariah, N. N., Basu, A., Albert, G., … Czerniecki, B. J. (2022). Disseminated cancer cells in breast cancer: Mechanism of dissemination and dormancy and emerging insights on therapeutic opportunities. Seminars in cancer biology, 78, 78–89. https://doi.org/10.1016/j.semcancer.2021.02.004

  49. Esposito, M., & Kang, Y. (2014). Targeting tumor-stromal interactions in bone metastasis. Pharmacology & therapeutics, 141(2), 222–233. https://doi.org/10.1016/j.pharmthera.2013.10.006

    Article  CAS  Google Scholar 

  50. Aguado, B. A., Bushnell, G. G., Rao, S. S., Jeruss, J. S., & Shea, L. D. (2017). Engineering the pre-metastatic niche. Nature Biomedical Engineering, 1(0077). https://doi.org/10.1038/s41551-017-0077

  51. Lim, A. R., & Ghajar, C. M. (2022). Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse. Seminars in cancer biology, 78, 104–123. https://doi.org/10.1016/j.semcancer.2021.05.007

    Article  CAS  PubMed  Google Scholar 

  52. Kamińska, K., Szczylik, C., & Bielecka, Z. F. (2015). The role of the cell-cell interactions in cancer progression. Journal of Cellular and Molecular Medicine, 19(2), 283–296. https://doi.org/10.1111/jcmm.12408

    Article  PubMed  PubMed Central  Google Scholar 

  53. De Wever, O., Van Bockstal, M., Mareel, M., Hendrix, A., & Bracke, M. (2014). Carcinoma-associated fibroblasts provide operational flexibility in metastasis. Seminars in cancer biology, 25, 33–46. https://doi.org/10.1016/j.semcancer.2013.12.009

    Article  CAS  PubMed  Google Scholar 

  54. Kwa, M. Q., Herum, K. M., & Brakebusch, C. (2019). Cancer-associated fibroblasts: How do they contribute to metastasis? Clinical and Experimental Metastasis, 36, 71–86. https://doi.org/10.1007/s10585-019-09959-0

    Article  CAS  PubMed  Google Scholar 

  55. Raz, Y., Cohen, N., Shani, O., Bell, R. E., Novitskiy, S. V., Abramovitz, L., … Erez, N. (2018). Bone marrow-derived fibroblasts are a functionally distinct stromal cell population in breast cancer. Journal of Experimental Medicine, 215(12), 3075–3093. https://doi.org/10.1084/jem.20180818

  56. Yeo, S. Y., Lee, K. W., Shin, D., An, S., Cho, K. H., & Kim, S. H. (2018). A positive feedback loop bi-stably activates fibroblasts. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-05274-6

  57. Psaila, B., Kaplan, R. N., Port, E. R., & Lyden, D. (2006). Priming the “soil” for breast cancer metastasis: The pre-metastatic niche. Breast disease, 26, 65–74. https://doi.org/10.3233/bd-2007-26106

    Article  CAS  PubMed  Google Scholar 

  58. Ping, Y. F., Yao, X. H., Jiang, J. Y., Zhao, L. T., Yu, S. C., Jiang, T., … Bian, X. W. (n.d.). The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell-mediated VEGF production and tumour angiogenesis via PI3K/AKT signalling. The Journal of pathology, 224(3), 344–354. https://doi.org/10.1002/path.2908

  59. Potente, M., & Carmeliet, P. (2017). The link between angiogenesis and endothelial metabolism. Annual Review of Physiology. Annual Reviews Inc. https://doi.org/10.1146/annurev-physiol-021115-105134

  60. Wilde, L., Roche, M., Domingo-Vidal, M., Tanson, K., Philp, N., Curry, J., & Martinez-Outschoorn, U. (2017). Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development. Seminars in Oncology, 44(3), 198–203. https://doi.org/10.1053/j.seminoncol.2017.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bott, A. J., Maimouni, S., & Zong, W. X. (2019). The pleiotropic effects of glutamine metabolism in cancer. Cancers, 11(6). https://doi.org/10.3390/cancers11060770

  62. Yan, S., Vandewalle, N., De Beule, N., Faict, S., Maes, K., De Bruyne, E., … De Veirman, K. (2019). AXL receptor tyrosine kinase as a therapeutic target in hematological malignancies: Focus on multiple myeloma. Cancers, 11(11). https://doi.org/10.3390/cancers11111727

  63. Yumoto, K., Eber, M. R., & Wang, J. (2016). Axl is required for TGF-β2-induced dormancy of prostate cancer cells in the bone marrow. Sci Rep, 6(36520). https://doi.org/10.1038/srep36520

  64. Prunier, C., Baker, D., ten Dijke, P., & Ritsma, L. (2019). TGF-β family signaling pathways in cellular dormancy. Trends in cancer, 5(1), 66–78. https://doi.org/10.1016/J.TRECAN.2018.10.010

    Article  CAS  PubMed  Google Scholar 

  65. Buijs, J. T., Henriquez, N. V., van Overveld, P. G. M., van der Horst, G., ten Dijke, P., & van der Pluijm, G. (2007). TGF-beta and BMP7 interactions in tumour progression and bone metastasis. Clinical & experimental metastasis, 24(8), 609–617. https://doi.org/10.1007/s10585-007-9118-2

    Article  CAS  Google Scholar 

  66. Bragado, P., Estrada, Y., & Parikh, F. (2013). TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nature Cell Biology, 15(11), 1351–1361. https://doi.org/10.1038/ncb2861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kovacevic, Z., Chikhani, S., Lui, G. Y. L., Sivagurunathan, S., & Richardson, D. R. (2013). The iron-regulated metastasis suppressor NDRG1 targets NEDD4L, PTEN, and SMAD4 and inhibits the PI3K and ras signaling pathways. Antioxidants and Redox Signaling, 18(8), 874–887. https://doi.org/10.1089/ars.2011.4273

    Article  CAS  PubMed  Google Scholar 

  68. Sun, J., Zhang, D., Bae, D. H., Sahni, S., Jansson, P., Zheng, Y., … Richardson, D. R. (2013). Metastasis suppressor, NDRG1, mediates its activity through signaling pathways and molecular motors. Carcinogenesis, 34, 1943–1954. https://doi.org/10.1093/carcin/bgt163

  69. Patel, S., Alam, A., Pant, R., & Chattopadhyay, S. (2019). Wnt signaling and its significance within the tumor microenvironment: Novel therapeutic insights. Front Immunol, 10(2872). https://doi.org/10.3389/fimmu.2019.02872

  70. Carreira-Barbosa, F., & Nunes, S. C. (2020). Wnt signaling: Paths for cancer progression. Advances in experimental medicine and biology, 1219, 189–202. https://doi.org/10.1007/978-3-030-34025-4_10

    Article  CAS  PubMed  Google Scholar 

  71. Ranganathan, A. C., Adam, A. P., Zhang, L., & Aguirre-Ghiso, J. A. (2006). Tumor cell dormancy induced by p38SAPK and ER-stress signaling: An adaptive advantage for metastatic cells? Cancer biology & therapy, 5(7), 729–735. https://doi.org/10.4161/cbt.5.7.2968

    Article  CAS  Google Scholar 

  72. Roux, P. P., & Blenis, J. (2004). ERK and p38 MAPK-activated protein kinases: A family of protein kinases with diverse biological functions. Microbiology and Molecular Biology Reviews, 68(2), 320–344. https://doi.org/10.1128/MMBR.68.2.320-344.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jahanban-Esfahlan, R., Seidi, K., Manjili, M. H., Jahanban-Esfahlan, A., Javaheri, T., & Zare, P. (2019). Tumor cell dormancy: Threat or opportunity in the fight against cancer. Cancers, 11(8), 1207. https://doi.org/10.3390/cancers11081207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kudaravalli, S., den Hollander, P., & Mani, S. A. (2022). Role of p38 MAP kinase in cancer stem cells and metastasis. Oncogene, 41(23), 3177–3185. https://doi.org/10.1038/s41388-022-02329-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sosa, M. S., Parikh, F., & Maia, A. G. (2015). NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes. Nature Communications, 6(1). https://doi.org/10.1038/ncomms7170

  76. Goddard, E. T., Bozic, I., Riddell, S. R., & Ghajar, C. M. (2018). Dormant tumour cells, their niches and the influence of immunity. Nature cell biology, 20(11), 1240–1249. https://doi.org/10.1038/s41556-018-0214-0

    Article  CAS  PubMed  Google Scholar 

  77. Massagué, J., & Ganesh, K. (2021). Metastasis-initiating cells and ecosystems. Cancer discovery, 11(4), 971–994. https://doi.org/10.1158/2159-8290.CD-21-0010

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wang, H.-F., Wang, S.-S., Huang, M.-C., Liang, X.-H., Tang, Y.-J., & Tang, Y.-L. (2019). Targeting immune-mediated dormancy: A promising treatment of cancer. Frontiers in oncology, 9, 498. https://doi.org/10.3389/fonc.2019.00498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lopes, N., & Vivier, E. (2021). Natural killer cells lull tumors into dormancy. Nature, 594(7864), 501–502. https://doi.org/10.1038/d41586-021-01381-5

    Article  CAS  PubMed  Google Scholar 

  80. Steel, J. C., Waldmann, T. A., & Morris, J. C. (2012). Interleukin-15 biology and its therapeutic implications in cancer. Trends in Pharmacological Sciences, 33(1), 35–41. https://doi.org/10.1016/j.tips.2011.09.004

    Article  CAS  PubMed  Google Scholar 

  81. Barra, N. G., Chew, M. v, Reid, S., & Ashkar, A. A. (2012). Interleukin-15 treatment induces weight loss independent of lymphocytes. PLoS One, 7(6). https://doi.org/10.1371/journal.pone.0039553

  82. Shi Y Riese DJ 2nd, S. J. (2020). The role of the CXCL12/CXCR4/CXCR7 chemokine axis in cancer. Frontiers Pharmacology, 11(574667). https://doi.org/10.3389/fphar.2020.574667

  83. Farrar, J. D., Katz, K. H., Windsor, J., Thrush, G., Scheuermann, R. H., Uhr, J. W., & Street, N. E. (1999). Cancer dormancy. VII. A regulatory role for CD8+ T cells and IFN-gamma in establishing and maintaining the tumor-dormant state. Journal of immunology, 162(5), 2842–2849.

    Article  CAS  Google Scholar 

  84. Mayhew, V., Omokehinde, T., & Johnson, R. W. (2020). Tumor dormancy in bone. Cancer reports (Hoboken, N.J.), 3(1), e1156. https://doi.org/10.1002/cnr2.1156

    Article  PubMed  Google Scholar 

  85. Lan, Q., Peyvandi, S., & Duffey, N. (2019). Type I interferon/IRF7 axis instigates chemotherapy-induced immunological dormancy in breast cancer. Oncogene, 38(15), 2814–2829. https://doi.org/10.1038/s41388-018-0624-2

    Article  CAS  PubMed  Google Scholar 

  86. Bidwell, B. N., Slaney, C. Y., & Withana, N. P. (2012). Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nature Medicine, 18(8), 1224–1231. https://doi.org/10.1038/nm.2830

    Article  CAS  PubMed  Google Scholar 

  87. Ostroumov, D., Fekete-Drimusz, N., Saborowski, M., Kühnel, F., & Woller, N. (2018). CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cellular and Molecular Life Sciences, 75(4), 689–713. https://doi.org/10.1007/s00018-017-2686-7

    Article  CAS  PubMed  Google Scholar 

  88. Flies, D. B., Sandler, B. J., Sznol, M., & Chen, L. (2011). Blockade of the B7–H1/PD-1 pathway for cancer immunotherapy. The Yale Journal of Biology and Medicine, 84(4), 409–421.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Topalian, S. L., Drake, C. G., & Pardoll, D. M. (2012). Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Current Opinion in Immunology, 24(2), 207–212. https://doi.org/10.1016/j.coi.2011.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jorgovanovic, D., Song, M., Wang, L., & Zhang, Y. (2020). Roles of IFN-γ in tumor progression and regression: A review. Biomark Research, 8(1). https://doi.org/10.1186/s40364-020-00228-x

  91. Burke, J. D., & Young, H. A. (2019). IFN-γ: A cytokine at the right time, is in the right place. Seminars Immunology, 43(101280). https://doi.org/10.1016/j.smim.2019.05.002

  92. Albrengues, J., Shields, M. A., Ng, D., Park, C. G., Ambrico, A., Poindexter, M. E., … Egeblad, M. (2018). Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science, 361(6409). https://doi.org/10.1126/science.aao4227

  93. Tohme, S., Yazdani, H. O., Al-Khafaji, A. B., Chidi, A. P., Loughran, P., Mowen, K., … Tsung, A. (2016). Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Research, 76(6), 1367–1380. https://doi.org/10.1158/0008-5472.CAN-15-1591

  94. Khan, I., & Steeg, P. S. (2018). Metastasis suppressors: Functional pathways. Laboratory Investigation, 98, 198–210. https://doi.org/10.1038/labinvest.2017.104

    Article  CAS  PubMed  Google Scholar 

  95. Stafford, L. J., Vaidya, K. S., & Welch, D. R. (2008). Metastasis suppressors genes in cancer. International Journal of Biochemistry and Cell Biology, 40(5), 874–891. https://doi.org/10.1016/j.biocel.2007.12.016

    Article  CAS  PubMed  Google Scholar 

  96. Nash, K. T., Phadke, P. A., Navenot, J. M., Hurst, D. R., Accavitti-Loper, M. A., Sztul, E., … Welch, D. R. (2007). Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy [published correction appears in J Natl Cancer Inst. Journal of National Cancer Institute, 99(4), 309–321. https://doi.org/10.1093/jnci/djk053

  97. Steeg, P. S., Bevilacqua, G., Pozzatti, R., Liotta, L. A., & Sobel, M. E. (1988). Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Research, 48(22), 6550–6554.

    CAS  PubMed  Google Scholar 

  98. Welch, D. R., Chen, P., Miele, M. E., McGary, C. T., Bower, J. M., Stanbridge, E. J., & Weissman, B. E. (1994). Microcell-mediated transfer of chromosome 6 into metastatic human C8161 melanoma cells suppresses metastasis but does not inhibit tumorigenicity. Oncogene, 9(1), 255–262.

    CAS  PubMed  Google Scholar 

  99. Goldberg, S. F., Miele, M. E., Hatta, N., Takata, M., Paquette-Straub, C., Freedman, L. P., & Welch, D. R. (2003). Melanoma metastasis suppression by chromosome 6: Evidence for a pathway regulated by CRSP3 and TXNIP. Cancer Research, 63(2), 432–440.

    CAS  PubMed  Google Scholar 

  100. Cebrian, V., Fierro, M., Orenes-Piero, E., Grau, L., Moya, P., Ecke, T., … Sánchez-Carbayo, M. (2011). KISS1 methylation and expression as tumor stratification biomarkers and clinical outcome prognosticators for bladder cancer patients. American Journal of Pathology, 179(2), 540–546. https://doi.org/10.1016/j.ajpath.2011.05.009

  101. Lee, J. H., & Welch, D. R. (1997). Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. Cancer Research, 57(12), 2384–2387.

    CAS  PubMed  Google Scholar 

  102. Cvetković, D., Babwah, A. V., & Bhattacharya, M. (2013). Kisspeptin/KISSIR system in breast cancer. Journal of Cancer, 4(8), 653–661. https://doi.org/10.7150/jca.7626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. McNally, L. R., Welch, D. R., Beck, B. H., Stafford, L. J., Long, J. W., Sellers, J. C., … Buchsbaum, D. J. (2010). KISS1 over-expression suppresses metastasis of pancreatic adenocarcinoma in a xenograft mouse model. Clinical and Experimental Metastasis, 27(8), 591–600. https://doi.org/10.1007/s10585-010-9349-5

  104. Jiang, Y., Berk, M., Singh, L. S., Tan, H., Yin, L., Powell, C. T., & Xu, Y. (2005). KiSS1 suppresses metastasis in human ovarian cancer via inhibition of protein kinase C alpha. Clinical and Experimental Metastasis, 22(5), 369–376. https://doi.org/10.1007/s10585-005-8186-4

    Article  CAS  PubMed  Google Scholar 

  105. Okugawa, Y., Inoue, Y., Tanaka, K., Toiyama, Y., Shimura, T., Okigami, M., … M., K. (2013). Loss of the metastasis suppressor gene KiSS1 is associated with lymph node metastasis and poor prognosis in human colorectal cancer. Oncology Reports, 30(3), 1449–1454. https://doi.org/10.3892/or.2013.2558

  106. Kostakis, I. D., Agrogiannis, G., Vaiopoulos, A. G., Mylona, E., Patsouris, E., Kouraklis, G., & Koutsilieris, M. (2015). A clinicopathological analysis of KISS1 and KISS1R expression in colorectal cancer. APMIS, 123(7), 629–637. https://doi.org/10.1111/apm.12397

    Article  CAS  PubMed  Google Scholar 

  107. Kostakis, I. D., Agrogiannis, G., Vaiopoulos, A. G., Mylona, E., Patsouris, E., Kouraklis, G., & Koutsilieris, M. (2018). KISS1 and KISS1R expression in gastric cancer. Journal of B.U.O.N, 23(3), 598–603.

    Google Scholar 

  108. Lee, J. H., Miele, M. E., Hicks, D. J., Phillips, K. K., Trent, J. M., Weissman, B. E., & Welch, D. R. (1996). KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. Journal of the National Cancer Institute, 88(23), 1731–1737. https://doi.org/10.1093/jnci/88.23.1731

    Article  CAS  PubMed  Google Scholar 

  109. Zhang, Y., Tang, Y. J., Li, Z. H., Pan, F., Huang, K., & Xu, G. H. (2013). KiSS1 inhibits growth and invasion of osteosarcoma cells through inhibition of the MAPK pathway. European Journal of Histochemistry, 57(4), 200–205. https://doi.org/10.4081/ejh.2013.e30

    Article  CAS  Google Scholar 

  110. Zheng, S., Chang, Y., Hodges, K. B., Sun, Y., Ma, X., Xueyi, … Cheng, L. (2010). Expression of KISS1 and MMP-9 in non-small cell lung cancer and their relations to metastasis and survival.Anticancer Research, 30(3), 713–718.

  111. Sun, Y. B., & Xu, S. (2013). Expression of KISS1 and KISS1R (GPR54) may be used as favorable prognostic markers for patients with non-small cell lung cancer. International Journal of Oncology, 43(2), 521–530. https://doi.org/10.3892/ijo.2013.1967

    Article  CAS  PubMed  Google Scholar 

  112. Schmidt, E., Haase, M., Ziegler, E., Emons, G., & Gründker, C. (2014). Kisspeptin-10 inhibits stromal-derived factor 1-induced invasion of human endometrial cancer cells. International Journal of Gynecological Cancer, 24(2), 210–217. https://doi.org/10.1097/IGC.0000000000000050

    Article  PubMed  Google Scholar 

  113. Martins, C. M. O., Fernandes, B. F., Antecka, E., Di Cesare, S., Mansure, J. J. C., Marshall, J. C., & Burnier, M. N. (2008). Expression of the metastasis suppressor gene KISS1 in uveal melanoma. Eye, 22(5), 707–711. https://doi.org/10.1038/sj.eye.6703090

    Article  CAS  PubMed  Google Scholar 

  114. Jiffar, T., Yilmaz, T., Lee, J., Hanna, E., El-Naggar, A., Yu, D., … Kupferman, M. E. (2011). KiSS1 mediates platinum sensitivity and metastasis suppression in head and neck squamous cell carcinoma. Oncogene, 30(28), 3163–3173. https://doi.org/10.1038/onc.2011.39

  115. Chen, Y., Zhang, C., Chen, J., Zhang, B., Zhang, H., Yang, X., … Wu, Q. (2018). Expression of transcription factor 21 (TCF21) and upregulation its level inhibits invasion and metastasis in esophageal squamous cell carcinoma. Medical Science Monitor, 24, 4128–4136. https://doi.org/10.12659/msm.909138

  116. Ikeguchi, M., Hirooka, Y., & Kaibara, N. (2003). Quantitative reverse transcriptase polymerase chain reaction analysis for KiSS-1 and orphan G-protein-coupled receptor (hOT7T175) gene expression in hepatocellular carcinoma. Journal of Cancer Research and Clinical Oncology, 129, 531–535. https://doi.org/10.1007/s00432-003-0469-z

    Article  CAS  PubMed  Google Scholar 

  117. Zang, S., Liu, J. F., Wang, B., Gao, L., & Huang, A. (2009). Expression of KiSS-1 gene and its role in invasion and metastasis of human hepatocellular carcinoma. Anatomical Record, 292(8), 1128–1134. https://doi.org/10.1002/ar.20950

    Article  CAS  Google Scholar 

  118. Goertzen, C. G., Dragan, M., Turley, E., Babwah, A. V., & Bhattacharya, M. (2016). KISS1R signaling promotes invadopodia formation in human breast cancer cell via β-arrestin2/ERK. Cellular Signalling, 28(3), 165–176. https://doi.org/10.1016/j.cellsig.2015.12.010

    Article  CAS  PubMed  Google Scholar 

  119. Tian, J., Al-Odaini, A. A., Wang, Y., Korah, J., Dai, M., Xiao, L., … Lebrun, J. J. (2018). KiSS1 gene as a novel mediator of TGFβ-mediated cell invasion in triple negative breast cancer. Cellular Signalling, 42, 1–10. https://doi.org/10.1016/j.cellsig.2017.10.002

  120. Kim, C.-W., Lee, H. K., Nam, M.-W., Lee, G., & Choi, K.-C. (2022). The role of KiSS1 gene on the growth and migration of prostate cancer and the underlying molecular mechanisms. Life sciences, 310, 121009. https://doi.org/10.1016/j.lfs.2022.121009

    Article  CAS  PubMed  Google Scholar 

  121. Marot, D., Bieche, I., Aumas, C., Esselin, S., Bouquet, C., Vacher, S., … De Roux, N. (2007). High tumoral levels of Kiss1 and G-protein-coupled receptor 54 expression are correlated with poor prognosis of estrogen receptor-positive breast tumors. Endocrine-Related Cancer, 14(3), 691–702. https://doi.org/10.1677/ERC-07-0012

  122. Lee, D. K., Nguyen, T., O’Neill, G. P., Cheng, R., Liu, Y., Howard, A. D., … O’Dowd, B. F. (1999). Discovery of a receptor related to the galanin receptors. FEBS Letters, 446(1), 103–107. https://doi.org/10.1016/S0014-5793(99)00009-5

  123. Ohtaki, T., Shintani, Y., Honda, S., Matsumoto, H., Hori, A., Kanehashi, K., … Fujino, M. (2001). Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature, 411(6837), 613–617. https://doi.org/10.1038/35079135

  124. Muir, A. I., Chamberlain, L., Elshourbagy, N. A., Michalovich, D., Moore, D. J., Calamari, A., … Harrison, D. C. (2001). AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. Journal of Biological Chemistry, 276, 28969–28975. https://doi.org/10.1074/jbc.M102743200

  125. Kotani, M., Detheux, M., Vandenbogaerde, A., Communi, D., Vanderwinden, J. M., le Poul, E., … Parmentier, M. (2001). The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. Journal of Biological Chemistry, 276(37), 34631–34636. https://doi.org/10.1074/jbc.M104847200

  126. Seminara, S. B. (2005). Metastin and its G protein-coupled receptor, GPR54: Critical pathway modulating GnRH secretion. Frontiers in neuroendocrinology, 26(3–4), 131–138. https://doi.org/10.1016/j.yfrne.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  127. Nimri, R., Lebenthal, Y., Lazar, L., Chevrier, L., Phillip, M., Bar, M., … Gat-Yablonski, G. (2011). A novel loss-of-function mutation in GPR54/KISS1R leads to hypogonadotropic hypogonadism in a highly consanguineous family. Journal of Clinical Endocrinology Metabolism, 96(3), E536–45. https://doi.org/10.1210/jc.2010-1676

  128. Carel, J.-C., Chaussain, J.-L., Milgrom, E., de Roux, N., Genin, E., Matsuda, F., … Matsuda, F. (2003). Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proceedings of the National Academy of Sciences, 100(19), 10972–10976. https://doi.org/10.1073/pnas.1834399100

  129. Topalglu, A. K., Tello, J. A., Kotan, L. D., Ozbek, M. N., Yilmaz, M. B., Erdogan, S., … Yuksel, B. (2012). Inactivating KISS1 mutation and hypogonadotropic hypogonadism. Obstetrical {\&} Gynecological Survey, 67(6), 352–353. https://doi.org/10.1097/ogx.0b013e31825bc1be

  130. Hiden, U., Bilban, M., Knöfler, M., & Desoye, G. (2007). Kisspeptins and the placenta: Regulation of trophoblast invasion. Reviews in endocrine & metabolic disorders, 8(1), 31–39. https://doi.org/10.1007/s11154-007-9030-8

    Article  CAS  Google Scholar 

  131. Padilla, S. L., Perez, J. G., Ben-Hamo, M., Johnson, C. W., Sanchez, R. E. A., Bussi, I. L., … de la Iglesia, H. O. (2019). Kisspeptin neurons in the arcuate nucleus of the hypothalamus orchestrate circadian rhythms and metabolism. Current Biology, 29(4), 592–604. https://doi.org/10.1016/j.cub.2019.01.022

  132. Diamantopoulou, Z., Castro-Giner, F., Schwab, F. D., Foerster, C., Saini, M., Budinjas, S., … Aceto, N. (2022). The metastatic spread of breast cancer accelerates during sleep. Nature, 607(7917), 156–162. https://doi.org/10.1038/s41586-022-04875-y

  133. De Opakua, A. I., Merino, N., Villate, M., Cordeiro, T. N., Ormaza, G., Sánchez-Carbayo, M., … Blanco, F. J. (2017). The metastasis suppressor KISS1 is an intrinsically disordered protein slightly more extended than a random coil. PLoS ONE, 12(2). https://doi.org/10.1371/journal.pone.0172507

  134. Shin, R., Welch, D. R., Mishra, V. K., Nash, K. T., Hurst, D. R., & Rama Krishna, N. (2009). Nuclear magnetic resonance and circular dichroism study of metastin (Kisspeptin-54) structure in solution. Clinical and Experimental Metastasis, 26(6), 527–533. https://doi.org/10.1007/s10585-009-9252-0

    Article  CAS  PubMed  Google Scholar 

  135. Takino, T., Koshikawa, N., Miyamori, H., Tanaka, M., Sasaki, T., Okada, Y., … Sato, H. (2003). Cleavage of metastasis suppressor gene product KiSS-1 protein/metastin by matrix metalloproteinases. Oncogene, 22(30), 4617–4626. https://doi.org/10.1038/sj.onc.1206542

  136. Milton, N. G. N. (2012). In vitro activities of kissorphin, a novel hexapeptide KiSS-1 derivative, in neuronal cells. Journal of Amino Acids, 2012, 1–6. https://doi.org/10.1155/2012/691463

    Article  CAS  Google Scholar 

  137. Yeo, R. L., Tsunekawa, K., Mi, J. M., Haet, N. U., Hwang, J. I., Osugi, T., … Tsutsui, K. (2009). Molecular evolution of multiple forms of kisspeptins and GPR54 receptors in vertebrates. Endocrinology, 150(6), 2837–2846. https://doi.org/10.1210/en.2008-1679

  138. Akazome, Y., Kanda, S., Okubo, K., & Oka, Y. (2010). Functional and evolutionary insights into vertebrate kisspeptin systems from studies of fish brain. Journal of Fish Biology, 76(1), 161–182. https://doi.org/10.1111/j.1095-8649.2009.02496.x

    Article  CAS  PubMed  Google Scholar 

  139. Harihar, S., Pounds, K. M., Iwakuma, T., Seidah, N. G., & Welch, D. R. (2014). Furin is the major proprotein convertase required for KISS1-to-Kisspeptin processing. PLoS ONE, 9(1). https://doi.org/10.1371/journal.pone.0084958

  140. Navenot, J.-M., Fujii, N., & Peiper, S. C. (2009). KiSS1 metastasis suppressor gene product induces suppression of tyrosine kinase receptor signaling to Akt, tumor necrosis factor family ligand expression, and apoptosis. Molecular Pharmacology, 75(5), 1074–1083. https://doi.org/10.1124/mol.108.054270

    Article  CAS  PubMed  Google Scholar 

  141. Navenot, J.-M., Fujii, N., & Peiper, S. C. (2009). Activation of Rho and Rho-associated kinase by GPR54 and KiSS1 metastasis suppressor gene product induces changes of cell morphology and contributes to apoptosis. Molecular Pharmacology, 75(6), 1300–1306. https://doi.org/10.1124/mol.109.055095

    Article  CAS  PubMed  Google Scholar 

  142. Cho, S. G., Li, D., Stafford, L. J., Luo, J., Rodriguez-Villanueva, M., Wang, Y., & Liu, M. (2009). KiSS1 suppresses TNFα-induced breast cancer cell invasion via an inhibition of RhoA-mediated NF-κB activation. Journal of Cellular Biochemistry, 107(6), 1139–1149. https://doi.org/10.1002/jcb.22216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Harms, J. F., Welch, D. R., & Miele, M. E. (2003). KISS1 metastasis suppression and emergent pathways. Clinical and Experimental Metastasis, 20, 11–18. https://doi.org/10.1023/A:1022530100931

    Article  CAS  PubMed  Google Scholar 

  144. Teng, Y., Liu, M., & Cowell, J. K. (2011). Functional interrelationship between the WASF3 and KISS1 metastasis-associated genes in breast cancer cells. International Journal of Cancer, 129(12), 2825–2835. https://doi.org/10.1002/ijc.25964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Arab, K., Smith, L. T., Gast, A., Weichenhan, D., Huang, J. P. H., Claus, R., … Plass, C. (2011). Epigenetic deregulation of TCF21 inhibits metastasis suppressor KISS1 in metastatic melanoma. Carcinogenesis, 32(10), 1467–1473. https://doi.org/10.1093/carcin/bgr138

  146. Dotterweich, J., Tower, R. J., Brandl, A., Müller, M., Hofbauer, L. C., Beilhack, A., … Jakob, F. (2016). The KISS1 receptor as an in vivo microenvironment imaging biomarker of multiple myeloma bone disease. PLoS ONE, 11(5). https://doi.org/10.1371/journal.pone.0155087

  147. Lu, X., Mu, E., & Wei, Y. (2011). VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell, 20(6), 701–714. https://doi.org/10.1016/j.ccr.2011.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Barkan, D., Kleinman, H., & Simmons, J. L. (2008). Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Research, 68(15), 6241–6250. https://doi.org/10.1158/0008-5472.CAN-07-6849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Akhtar, M., Haider, A., Rashid, S., & Al-Nabet, A. D. M. H. (2019). Paget’s “seed and Soil” theory of cancer metastasis: An idea whose time has come. Advances in Anatomic Pathology, 26(1), 69–74. https://doi.org/10.1097/PAP.0000000000000219

    Article  CAS  PubMed  Google Scholar 

  150. Lee, K. H., & Kim, J. R. (2009). Kiss-1 suppresses MMP-9 expression by activating p38 MAP kinase in human stomach cancer. Oncology Research, 18(2–3), 107–116. https://doi.org/10.3727/096504009789954591

    Article  CAS  PubMed  Google Scholar 

  151. Kaverina, N., Borovjagin, A. V, Kadagidze, Z., Baryshnikov, A., Baryshnikova, M., Malin, D., … Ulasov, I. V. (2017). Astrocytes promote progression of breast cancer metastases to the brain via a KISS1-mediated autophagy. Autophagy, 13(11), 1905–1923. https://doi.org/10.1080/15548627.2017.1360466

  152. Liu, W., Beck, B. H., Vaidya, K. S., Nash, K. T., Feeley, K. P., Ballinger, S. W., … Welch, D. R. (2014). Metastasis suppressor KISS1 Seems to reverse the warburg effect by enhancing mitochondrial biogenesis. Cancer Research, 74(3), 954–963. https://doi.org/10.1158/0008-5472.CAN-13-1183

  153. Tsuruo, T., Iida, H., Makishima, F., Yamori, T., Kawabata, H., Tsukagoshi, S., & Sakurai, Y. (1985). Inhibition of spontaneous and experimental tumor metastasis by the calcium antagonist verapamil. Cancer Chemotherapy and Pharmacology, 14(1), 30–33. https://doi.org/10.1007/BF00552721

    Article  CAS  PubMed  Google Scholar 

  154. Welch, D. R., Harper, D. E., & Yohem, K. H. (1993). U-77,863: A novel cinnanamide isolated from Streptomyces griseoluteus that inhibits cancer invasion and metastasis. Clinical & experimental metastasis, 11(2), 201–212. https://doi.org/10.1007/BF00114978

    Article  CAS  Google Scholar 

  155. Peruzzo, R., Costa, R., Bachmann, M., Leanza, L., & Szabò, I. (2020). Mitochondrial metabolism, contact sites and cellular calcium signaling: Implications for tumorigenesis. Cancers, 12(9), 2574. https://doi.org/10.3390/cancers12092574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. McCormack, J. G., & Denton, R. M. (1993). Mitochondrial Ca2+ transport and the role of intramitochondrial Ca2+ in the regulation of energy metabolism. Developmental Neuroscience, 15(3–5), 165–173. https://doi.org/10.1159/000111332

    Article  CAS  PubMed  Google Scholar 

  157. Manley, S. J., Liu, W., & Welch, D. R. (2017). The KISS1 metastasis suppressor appears to reverse the Warburg effect by shifting from glycolysis to mitochondrial beta-oxidation. Journal of Molecular Medicine, 95(9), 951–963. https://doi.org/10.1007/s00109-017-1552-2

    Article  CAS  PubMed  Google Scholar 

  158. Ibrahim-Hashim, A., & Estrella, V. (2019). Acidosis and cancer: From mechanism to neutralization. Cancer and Metastasis Reviews, 38, 149–155. https://doi.org/10.1007/s10555-019-09787-4

    Article  CAS  PubMed  Google Scholar 

  159. Liu, W., Beck, B. H., Vaidya, K. S., Nash, K. T., Feeley, K. P., Ballinger, S. W., … Welch, D. R. (2014). Metastasis suppressor KISS1 seems to reverse the Warburg effect by enhancing mitochondrial biogenesis. Cancer Research, 74(3), 954–963. https://doi.org/10.1158/0008-5472.CAN-13-1183

  160. Pranzini, E., Raugei, G., & Taddei, M. L. (2022). Metabolic features of tumor dormancy: Possible therapeutic strategies. Cancers, 14(3). https://doi.org/10.3390/cancers14030547

  161. Trevisan, C. M., Montagna, E., De Oliveira, R., Christofolini, D. M., Barbosa, C. P., Crandall, K. A., & Bianco, B. (2018). Kisspeptin/GPR54 system: What do we know about its role in human reproduction? Cellular Physiology and Biochemistry, 49, 1259–1276. https://doi.org/10.1159/000493406

    Article  CAS  PubMed  Google Scholar 

  162. De Tassigny, X. D. A., Jayasena, C., Murphy, K. G., Dhillo, W. S., & Colledge, W. H. (2017). Mechanistic insights into the more potent effect of KP-54 compared to KP-10 in vivo. PLoS ONE, 12(5). https://doi.org/10.1371/journal.pone.0176821

  163. Ciaramella, V., Della Corte, C. M., Ciardiello, F., & Morgillo, F. (2018). Kisspeptin and cancer: Molecular interaction, biological functions, and future perspectives. Frontiers in Endocrinology, 9(115). https://doi.org/10.3389/fendo.2018.00115

  164. Werner-Klein, M., & Klein, C. A. (2019). Therapy resistance beyond cellular dormancy. Nature Cell Biology, 21(2), 117–119. https://doi.org/10.1038/s41556-019-0276-7

    Article  CAS  PubMed  Google Scholar 

  165. Sleeman, J., & Steeg, P. S. (2010). Cancer metastasis as a therapeutic target. European journal of cancer (Oxford, England: 1990), 46(7), 1177–1180. https://doi.org/10.1016/j.ejca.2010.02.039

    Article  CAS  PubMed  Google Scholar 

  166. Young, E. D., Strom, K., Tsue, A. F., Usset, J. L., MacPherson, S., McGuire, J. T., & Welch, D. R. (2018). Automated quantitative image analysis for ex vivo metastasis assays reveals differing lung composition requirements for metastasis suppression by KISS1. Clinical and Experimental Metastasis, 35(1–2), 77–86. https://doi.org/10.1007/s10585-018-9882-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work done in SH’s lab has been generously funded by a grant from Indian Council of Medical Research (ICMR-2021-8665-F1). Work done in DRW’s lab has been generously funded by grants from the U.S. National Cancer Institute (RO1-CA62168; P30-CA168524), the National Foundation for Cancer Research, METAvivor Research and Services Inc., and Theresa’s Research Foundation. We apologize to any authors whose work was omitted due to article guidelines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sitaram Harihar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harihar, S., Welch, D.R. KISS1 metastasis suppressor in tumor dormancy: a potential therapeutic target for metastatic cancers?. Cancer Metastasis Rev 42, 183–196 (2023). https://doi.org/10.1007/s10555-023-10090-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-023-10090-6

Keywords

Navigation