Skip to main content

Advertisement

Log in

Metastasis suppressor NME1 in exosomes or liposomes conveys motility and migration inhibition in breast cancer model systems

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Tumor-derived exosomes have documented roles in accelerating the initiation and outgrowth of metastases, as well as in therapy resistance. Little information supports the converse, that exosomes or similar vesicles can suppress metastasis. We investigated the NME1 (Nm23-H1) metastasis suppressor as a candidate for metastasis suppression by extracellular vesicles. Exosomes derived from two cancer cell lines (MDA-MB-231T and MDA-MB-435), when transfected with the NME1 (Nm23-H1) metastasis suppressor, secreted exosomes with NME1 as the predominant constituent. These exosomes entered recipient tumor cells, altered their endocytic patterns in agreement with NME1 function, and suppressed in vitro tumor cell motility and migration compared to exosomes from control transfectants. Proteomic analysis of exosomes revealed multiple differentially expressed proteins that could exert biological functions. Therefore, we also prepared and investigated liposomes, empty or containing partially purified rNME1. rNME1 containing liposomes recapitulated the effects of exosomes from NME1 transfectants in vitro. In an experimental lung metastasis assay the median lung metastases per histologic section was 158 using control liposomes and 15 in the rNME1 liposome group, 90.5% lower than the control liposome group (P = 0.016). The data expand the exosome/liposome field to include metastasis suppressive functions and describe a new translational approach to prevent metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. Steeg PS (2016) Targeting metastasis. Nat Rev Cancer 16(4):201–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dvorak HF et al (1981) Tumor shedding and coagulation. Science 212(4497):923–924

    Article  CAS  PubMed  Google Scholar 

  3. Crawford N (1971) The presence of contractile proteins in platelet microparticles isolated from human and animal platelet-free plasma. Br J Haematol 21(1):53–69

    Article  CAS  PubMed  Google Scholar 

  4. Mashouri L et al (2019) Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. https://doi.org/10.1186/s12943-019-0991-5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang L (1871) Yu DH (2019) Exosomes in cancer development, metastasis, and immunity. Biochimica Et Biophysica Acta-Rev Cancer 2:455–468

    Google Scholar 

  6. Peinado H et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rodrigues G et al (2019) Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat Cell Biol 21(11):1403–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Costa-Silva B et al (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17(6):816–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ono M et al (2014) Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal. https://doi.org/10.1126/scisignal.2005231

    Article  PubMed  Google Scholar 

  10. Zhang HY et al (2017) Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat Commun. https://doi.org/10.1038/ncomms15016

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hoshino A et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ichikawa H et al (2021) Exosome transfer between pancreatic-cancer cells is associated with metastasis in a nude-mouse model. Anticancer Res 41(6):2829–2834

    Article  CAS  PubMed  Google Scholar 

  13. Wang D et al (2020) Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett 474:36–52

    Article  CAS  PubMed  Google Scholar 

  14. Wang KY et al (2020) An exosome-like programmable-bioactivating paclitaxel prodrug nanoplatform for enhanced breast cancer metastasis inhibition. Biomaterial. https://doi.org/10.1016/j.biomaterials.2020.120224

    Article  Google Scholar 

  15. Corrado C et al (2013) Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci 14(3):5338–5366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shimbo K et al (2014) Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochem Biophys Res Commun 445(2):381–387

    Article  CAS  PubMed  Google Scholar 

  17. Mao G, Mu Z, Wu D (2021) Exosome-derived miR-2682–5p suppresses cell viability and migration by HDAC1-silence-mediated upregulation of ADH1A in non-small cell lung cancer. Hum Exp Toxicol 40(12 suppl):S318–S330. https://doi.org/10.1177/09603271211041997

    Article  CAS  PubMed  Google Scholar 

  18. Shang D, Liu Y, Chen Z (2022) Exosome-transmitted miR-128 targets CCL18 to inhibit the proliferation and metastasis of urothelial carcinoma. Frontiers Mol Biosci. https://doi.org/10.3389/fmolb.2021.760748

    Article  Google Scholar 

  19. Feng CX et al (2021) Folic acid-modified Exosome-PH20 enhances the efficiency of therapy via modulation of the tumor microenvironment and directly inhibits tumor cell metastasis. Bioactive Mater 6(4):963–974

    Article  CAS  Google Scholar 

  20. Steeg PS et al (1988) Evidence for a novel gene associated with low tumor metastatic potential. J Nat’l Cancer Inst 80:200–204

    Article  CAS  Google Scholar 

  21. Hartsough MT, Steeg PS (2000) Nm23/nucleoside diphosphate kinase in human cancers. J Bioenerg Biomembr 32(3):301–308

    Article  CAS  PubMed  Google Scholar 

  22. Leone A et al (1991) Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm23-transfected melanoma cells. Cell 65:25–35

    Article  CAS  PubMed  Google Scholar 

  23. Leone A et al (1993) Transfection of human nm23-H1 into the human MDA-MB-435 breast carcinoma cell line: Effects on tumor metastatic potential, colonization, and enzymatic activity. Oncogene 8:2325–2333

    CAS  PubMed  Google Scholar 

  24. Parhar RS et al (1995) Effects of cytokine mediated modulation of Nm23 expression on the invasion and metastatic behavior of B16F10 melanoma cells. Int J Cancer 60:204–210

    Article  CAS  PubMed  Google Scholar 

  25. Miyazaki H et al (1999) Overexpression of nm23-H2/NDP Kinase B in a human oral squamous cell carcinoma cell line results in reduced metastasis, differentiated phenotype in the metastatic site, and growth factor-independent proliferative activity in culture. ClinCancer Res 5:4301–4307

    CAS  Google Scholar 

  26. Liu F et al (2002) Transfection of the nm23-H1 gene into human hepatocarcinoma cell line inhibits the expression of sialyl Lewis X, a1,3 fucosyltransferase VII, and metastatic potential. J Cancer Res Clin Oncol 128:189–196

    Article  CAS  PubMed  Google Scholar 

  27. Che G et al (2006) Transfection of nm23-H1 increased expression of beta-Catenin, E-cadherin and TIMP-1 and decreased the expression of MMP-2, CD44v6 and VEGF and inhibited the metastatic potential of human non-small cell lung cancer cell line L9981. Neoplasma 53(6):530–537

    CAS  PubMed  Google Scholar 

  28. Lim J et al (2011) Cell-permeable NM23 Blocks the maintenance and progression of established pulmonary metastasis. Can Res 71(23):7216–7225

    Article  CAS  Google Scholar 

  29. Fan Y et al (2013) nm23-H1 gene driven by hTERT promoter induces inhibition of invasive phenotype and metastasis of lung cancer xenograft in mice. Thoracic Cancer 4(1):41–52

    Article  CAS  PubMed  Google Scholar 

  30. Jarrett SG et al (2013) NM23 deficiency promotes metastasis in a UV radiation-induced mouse model of human melanoma. Clin Exp Metas 30(1):25–36

    Article  CAS  Google Scholar 

  31. Yokoyama A et al (1998) Evaluation by multivariate analysis of the differentiation inhibitory factor nm23 as a prognostic factor in acute myelogenous leukemia and application to other hematologic malignancies. Blood 91(6):1845–1851

    Article  CAS  PubMed  Google Scholar 

  32. Dearolf C, Hersperger E, Shearn A (1988) Developmental consequences of awdb3, a cell autonomous lethal mutation of Drosophila induced by hybrid dysgenesis. Dev Biol 129:159–168

    Article  CAS  PubMed  Google Scholar 

  33. Woolworth JA, Nallamothu G, Hsu T (2009) The drosophila metastasis suppressor gene Nm23 homolog, awd, regulates epithelial integrity during oogenesis. Mol Cell Biol 29(17):4679–4690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dammai V et al (2003) Drosophila awd, the homolog of human nm23, regulates FGF receptor levels and functions synergistically with shi/dynamin during tracheal development. Genes Dev 17(22):2812–2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ignesti M et al (2014) Notch signaling during development requires the function of awd, the Drosophila homolog of human metastasis suppressor gene Nm23. BMC Biol. https://doi.org/10.1186/1741-7007-12-12

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nallamothu G et al (2008) awd, the homolog of metastasis suppressor gene Nm23, regulates Drosophila epithelial cell invasion. Mol Cell Biol 28(6):1964–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boissan M et al (2014) Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling. Science 344(6191):1510–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khan I, Gril B, Steeg PS (2019) Metastasis suppressors NME1 and NME2 promote dynamin 2 oligomerization and regulate tumor cell endocytosis, motility, and metastasis. Can Res 79(18):4689–4702

    Article  CAS  Google Scholar 

  39. Romani P et al (2016) Dynamin controls extracellular level of Awd/Nme1 metastasis suppressor protein. Naunyn-Schmiedebergs Arch Pharmacol 389(11):1171–1182

    Article  CAS  PubMed  Google Scholar 

  40. Romani P et al (2018) Extracellular NME proteins: a player or a bystander? Lab Invest 98(2):248–257

    Article  CAS  PubMed  Google Scholar 

  41. Bunce CM, Khanim FL (2018) The “known-knowns”, and “known-unknowns” of extracellular Nm23-H1/NDPK proteins. Lab Invest 98(5):602–608

    Article  CAS  PubMed  Google Scholar 

  42. Ross DT et al (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24(3):227–235

    Article  CAS  PubMed  Google Scholar 

  43. Chambers AF (2009) MDA-MB-435 and M14 cell lines: identical but not M14 melanoma? Cancer Res 69(13):5292–5293

    Article  CAS  PubMed  Google Scholar 

  44. Horak CE et al (2007) Nm23-H1 suppresses tumor cell motility by down-regulating the lysophosphatidic acid receptor EDG2. Cancer Res 67(15):7238–7246

    Article  CAS  PubMed  Google Scholar 

  45. Chevallet M et al (2007) Toward a better analysis of secreted proteins: the example of the myeloid cells secretome. Proteomics 7(11):1757–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wortzel I et al (2019) Exosome-mediated metastasis: communication from a distance. Dev Cell 49(3):347–360

    Article  CAS  PubMed  Google Scholar 

  47. Babst M et al (2000) Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic 1(3):248–258

    Article  CAS  PubMed  Google Scholar 

  48. Okabayashi S, Kimura N (2010) LGI3 interacts with flotillin-1 to mediate APP trafficking and exosome formation. NeuroReport 21(9):606–610

    Article  CAS  PubMed  Google Scholar 

  49. Ostrowski M et al (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30

    Article  CAS  PubMed  Google Scholar 

  50. Yang BY et al (2021) Recent advances in liposome formulations for breast cancer therapeutics. Cell Mol Life Sci 78(13):5225–5243

    Article  CAS  PubMed  Google Scholar 

  51. Jung YR et al (2016) Silencing of ST6Gal I enhances colorectal cancer metastasis by down-regulating KAI1 via exosome-mediated exportation and thereby rescues integrin signaling. Carcinogenesis 37(11):1089–1097

    Article  CAS  PubMed  Google Scholar 

  52. Okabe-Kado J et al (2009) Extracellular NM23 protein promotes the growth and survival of primary cultured human acute myelogenous leukemia cells. Cancer Sci 100(10):1885–1894

    Article  CAS  PubMed  Google Scholar 

  53. Anzinger J, et al (2001) Secretion of a nucleoside diphosphate kinase (Nm23-H2) by cells from human breast, colon, pancreas and lung tumors. 44th Annual Meeting of the Western-Pharmacology-Society, Vancouver, Canada Mar 25–29 Proceedings of the Western Pharmacology Society. Vol.44, pp 61–3

  54. Yokdang N et al (2011) A role for nucleotides in support of breast cancer angiogenesis: heterologous receptor signalling. Br J Cancer 104(10):1628–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Palazzolo G et al (2012) Proteomic analysis of exosome-like vesicles derived from breast cancer cells. Anticancer Res 32(3):847–860

    CAS  PubMed  Google Scholar 

  56. Kruger S et al (2014) Molecular characterization of exosome-like vesicles from breast cancer cells. BMC Cancer. https://doi.org/10.1186/1471-2407-14-44

    Article  PubMed  PubMed Central  Google Scholar 

  57. Menard JA et al (2016) Metastasis stimulation by hypoxia and acidosis-induced extracellular lipid uptake is mediated by proteoglycan-dependent endocytosis. Cancer Res 76(16):4828–4840

    Article  CAS  PubMed  Google Scholar 

  58. Li YJ et al (2020) Hepatic lipids promote liver metastasis. Jci Insight. https://doi.org/10.1172/jci.insight.136215

    Article  PubMed  PubMed Central  Google Scholar 

  59. Luo XJ et al (2018) The implications of signaling lipids in cancer metastasis. Exp Mol Med. https://doi.org/10.1038/s12276-018-0150-x

    Article  PubMed  PubMed Central  Google Scholar 

  60. Park JW (2002) Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res 4(3):93–97

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the NCI confocal and FACS facilities. Electron Microscopy was performed at the NICHD Microscopy & Imaging Core with the assistance of Chip Dye. P. Steeg is supported by the Intramural Program of the NCI, NIH [Investigator-Initiated Intramural Research Projects (ZIA). Project #1ZIASC000892-33, Application #9344091]. This work is supported by an NIH intramural grant.

Funding

This work is supported by a National Institutes of Health (NIH) intramural grant.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: IK, PSS; Development of methodology: IK, PSS; Acquisition of data (provided animals, provided facilities, etc.): IK, BG, AH, SD, DCL; Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): IK, HHY, MPL, BG, DCL, PSS; Writing, review, and/or revision of the manuscript: IK, PSS, DCL; Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): IK; Study supervision: IK, DCL, PSS.

Corresponding author

Correspondence to Imran Khan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflicts of interest

No potential conflicts of interest were disclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Gril, B., Hoshino, A. et al. Metastasis suppressor NME1 in exosomes or liposomes conveys motility and migration inhibition in breast cancer model systems. Clin Exp Metastasis 39, 815–831 (2022). https://doi.org/10.1007/s10585-022-10182-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-022-10182-7

Keywords

Navigation