Skip to main content
Log in

Immobilization of lactoperoxidase on graphene oxide nanosheets with improved activity and stability

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

The purpose of this study was to develop a facile and efficient method to enhance the stability and activity of lactoperoxidase (LPO) by using its immobilization on graphene oxide nanosheets (GO-NS).

Methods

Following the LPO purification from bovine whey, it was immobilized onto functionalized GO-NS using glutaraldehyde as cross-linker. Kinetic properties and stability of free and immobilized LPO were investigated.

Results

LPO was purified 59.13 fold with a specific activity of 5.78 U/mg protein. The successful immobilization of LPO on functionalized GO-NS was confirmed by using dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FT-IR). The overall results showed that the stability of the immobilized LPO was considerably improved compared to free LPO. Apparent Km and Vmax of LPO also indicated that the immobilized enzyme had greater affinity to the substrate than the native enzyme.

Conclusions

Graphene oxide nanosheets are effective means for immobilization of LPO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Baarri ANm AN, Hayakawa S, Ogawa M (2015) Enhancement antimicrobial activity of hyphothiocyanite using carrot against Staphylococcus Aureus and Escherichia Coli. Proced Food Sci 3:473–478

    Article  Google Scholar 

  • Aloui H, Khwaldia K (2016) Natural Antimicrobial edible coatings for microbial safety and food quality enhancement. Compr Rev Food Sci Food Safety 15(6):1080–1103

    Article  CAS  Google Scholar 

  • Amirjani A, Marashi P, Fatmehsari DH (2014) Effect of AgNO3 addition rate on aspect ratio of CuCl2–mediated synthesized silver nanowires using response surface methodology. Colloid Surf A 444:33–39

    Article  CAS  Google Scholar 

  • Andersson J, Mattiasson B (2006) Simulated moving bed technology with a simplified approach for protein purification. Separation of lactoperoxidase and lactoferrin from whey protein concentrate. J Chromatogr A 1107(1–2):88–95

    Article  CAS  PubMed  Google Scholar 

  • Benoy MJ, Essy AK, Sreekumar B, Haridas M (2000) Thiocyanate mediated antifungal and antibacterial property of goat milk lactoperoxidase. Life Sci 66(25):2433–2439

    Article  CAS  PubMed  Google Scholar 

  • Björck L, Rosén C, Marshall V, Reiter B (1975) Antibacterial activity of the lactoperoxidase system in milk against pseudomonads and other gram-negative bacteria. Appl Microbiol 30(2):199–204

    PubMed  PubMed Central  Google Scholar 

  • Borzouee F, Mofid MR, Varshosaz J, Shariat SZAS (2016) Purification of lactoperoxidase from bovine whey and investigation of kinetic parameters. Adv Biomed Res 5:189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analy Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  • Carocho M, Morales P, Ferreira IC (2015) Natural food additives: quo vadis? Trends Food Sci Technol 45(2):284–295

    Article  CAS  Google Scholar 

  • Chance B, Maehly A (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chen W, Yan L, Bangal PR (2010) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48(4):1146–1152

    Article  CAS  Google Scholar 

  • Cipolatti EP, Silva MJA, Klein M, Feddern V, Feltes MMC, Oliveira JV, Ninow JL, Oliveira D (2014) Current status and trends in enzymatic nanoimmobilization. J Mol Cataly B 99:56–67

    Article  CAS  Google Scholar 

  • Das B, Roy AP, Bhattacharjee S, Chakraborty S, Bhattacharjee C (2015) Lactose hydrolysis by β-galactosidase enzyme: optimization using response surface methodology. Ecotoxicol Envir Safety 121:244–252

    Article  CAS  Google Scholar 

  • Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3. Biotech 3(1):1–9

    Google Scholar 

  • Davidson PM, Taylor TM, Schmidt SE (2013) Chemical preservatives and natural antimicrobial compounds. In: Doyle MP, Buchanan RL (eds) Food microbiology: fundamentals and frontiers, 4th edn. ASM Press, Washington, pp 765–801

    Google Scholar 

  • El-Fakharany EM, Uversky VN, Redwan EM (2017) Comparative analysis of the antiviral activity of camel, bovine, and human lactoperoxidases against herpes simplex virus type 1. Appl Biochem Biotechnol 182(1):294–310

    Article  CAS  PubMed  Google Scholar 

  • Ferrari AC, Bonaccorso F, Fal’Ko V, Novoselov KS, Roche S, Bøggild P et al (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7(11):4598–4810

    Article  CAS  PubMed  Google Scholar 

  • Fong BY, Norris CS, Palmano KP (2008) Fractionation of bovine whey proteins and characterisation by proteomic techniques. Int Dairy J 18(1):23–46

    Article  CAS  Google Scholar 

  • Fuda E, Jauregi P, Pyle DL (2004) Recovery of lactoferrin and lactoperoxidase from sweet whey using colloidal gas aphrons (CGAs) generated from an anionic surfactant. AOT Biotechnol Prog 20(2):514–525

    Article  CAS  PubMed  Google Scholar 

  • He C, Liu J, Xie L, Zhang Q, Li C, Gui D, Zhang G, Wu C (2009) Activity and thermal stability improvements of glucose oxidase upon adsorption on core-shell PMMA − BSA nanoparticles. Langmuir 25(23):13456–13460

    Article  CAS  PubMed  Google Scholar 

  • Jacob BM, Manoj NK, Haridas M (1998) Antibacterial property of goat milk lactoperoxidase. Indian J Exp Biol 36(8):808–810

    CAS  PubMed  Google Scholar 

  • Jafary F, Kashanian S, Sharieat ZS, Jafary F, Omidfar K, Paknejad M (2012) Stability improvement of immobilized lactoperoxidase using polyaniline polymer. Mol Biol Rep 39(12):10407–10412

    Article  CAS  PubMed  Google Scholar 

  • Kishore D, Talat M, Srivastava ON, Kayastha AM (2012) Immobilization of β-galactosidase onto functionalized graphene nano-sheets using response surface methodology and its analytical applications. PLoS ONE 7(7):e40708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohler H, Jenzer H (1989) Interaction of lactoperoxidase with hydrogen peroxide: formation of enzyme intermediates and generation of free radicals. Free Radic Biol Med 6(3):23–39

    Article  Google Scholar 

  • Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39(8):549–559

    Article  CAS  PubMed  Google Scholar 

  • Kussendrager KD, van Hooijdonk AC (2000) Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications. Br J Nutr Suppl 1:S19–20

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomat 9(12):9243–9257

    Article  CAS  Google Scholar 

  • Mecitoğlu Ç, Yemenicioğlu A (2007) Partial purification and preparation of bovine lactoperoxidase and characterization of kinetic properties of its immobilized form incorporated into cross-linked alginate films. Food Chem 104(2):726–733

    Article  CAS  Google Scholar 

  • Miroliaei M, Nayeri H, Samsam-Shariat S, Atar AM (2007) Biospecific immobilization of lactoperoxidase on Con A-Sepharose 4B. Sci Iran 14(4):303–307

    CAS  Google Scholar 

  • Mizuki T, Sawai M, Nagaoka Y, Morimoto H, Maekawa T (2013) Activity of lipase and chitinase immobilized on superparamagnetic particles in a rotational magnetic field. PLoS ONE 8(6):e66528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montel M-C, Buchin S, Mallet A, Delbes-Paus C, Vuitton DA, Desmasures N, Berthier F (2014) Traditional cheeses: rich and diverse microbiota with associated benefits. Int J Food Microbiol 177:136–154

    Article  PubMed  Google Scholar 

  • Nandini KE, Rastogi NK (2010) Single step purification of lactoperoxidase from whey involving reverse micelles-assisted extraction and its comparison with reverse micellar extraction. Biotechnol Prog 26(3):763–771

    Article  CAS  PubMed  Google Scholar 

  • Nandini K, Rastogi NK (2011) Integrated downstream processing of lactoperoxidase from milk whey involving aqueous two-phase extraction and ultrasound-assisted ultrafiltration. Appl Biochem Biotechnol 163(1):173–185

    Article  CAS  PubMed  Google Scholar 

  • Nash RA, Haeger BE (1966) Zeta potential in the development of pharmaceutical suspensions. J Pharm Sci 55(8):829–837

    Article  CAS  PubMed  Google Scholar 

  • Ozdemir H, Aygul I, Küfrevioglu OI (2001) Purification of lactoperoxidase from bovine milk and investigation of the kinetic properties. Prep Biochem Biotechnol 31:125–134

    Article  CAS  PubMed  Google Scholar 

  • Pourtois M, Binet C, Van Tieghem N, Courtois PR, Vandenabbeele A, Thirty L (1991) Saliva can contribute in quick inhibition of HIV infectivity. AIDS 5(5):598–600

    Article  CAS  PubMed  Google Scholar 

  • Raghavan N, Thangavel S, Venugopal G (2015) Enhanced photocatalytic degradation of methylene blue by reduced graphene-oxide/titanium dioxide/zinc oxide ternary nanocomposites. Mater Sci Semicond Process 30:321–329

    Article  CAS  Google Scholar 

  • Sharma S, Singh AK, Kaushik S, Sinha M, Singh RP, Sharma P, Sirohi H, Kaur P, Singh TP (2013) Lactoperoxidase: structural insights into the function, ligand binding and inhibition. Int J Biochem Mol Biol 4(3):108–128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh N, Srivastava G, Talat M, Raghubanshi H, Srivastava ON, Kayastha AM (2014) Cicer α-galactosidase immobilization onto functionalized graphene nanosheets using response surface method and its applications. Food Chem 142:430–438

    Article  CAS  PubMed  Google Scholar 

  • Srivastava G, Singh K, Talat M, Srivastava ON, Kayastha AM (2014) Functionalized graphene sheets as immobilization matrix for fenugreek β-Amylase: enzyme kinetics and stability studies. PLoS ONE 9(11):e113408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srivastava G, Roy S, Kayastha AM (2015) Immobilisation of Fenugreek β-amylase on chitosan/PVP blend and chitosan coated PVC beads: a comparative study. Food Chem 172:844–851

    Article  CAS  PubMed  Google Scholar 

  • Su R, Shi P, Zhu M, Hong F, Li D (2012) Studies on the properties of graphene oxide–alkaline protease bio-composites. Bioresour Technol 115:136–140

    Article  CAS  PubMed  Google Scholar 

  • Uguz M, Ozdemir H (2005) Purification of bovine milk lactoperoxidase and investigation of antibacterial properties at different thiocyanate mediated. Appl Biochem Microbiol 41(4):349–353

    Article  CAS  Google Scholar 

  • Ullah MW, Khattak WA, Ul-Islam M, Khan S, Park JK (2016) Metabolic engineering of synthetic cell-free systems: strategies and applications. Biochem Eng J 105:391–405

    Article  CAS  Google Scholar 

  • Verma ML, Puri M, Barrow CJ (2016) Recent trends in nanomaterials immobilised enzymes for biofuel production. Crit Rev Biotechnol 36(1):108–119

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Sun J, Wang Y, Sheng J, Wang F, Sun M (2014) Application of iron magnetic nanoparticles in protein immobilization. Molecules 9(8):11465–11486

    Article  CAS  Google Scholar 

  • Yoshida S (1991) Isolation of lactoperoxidase and lactoferrins from bovine milk acid whey by carboxymethyl cation exchange chromatography. J Dairy Sci 74(5):1439–1444

    Article  CAS  Google Scholar 

  • Zhang H, Jiang B, Zhi-Biao F, Yu-Xiao Q, Xuan L (2016) Separation of α-lactalbumin and β-lactoglobulin in whey protein isolate by aqueous two-phase system of polymer/phosphate. Chin J Anal Chem 44(5):754–759

    Article  Google Scholar 

Download references

Acknowledgements

The present work was supported by the Grant no. 393740 from Isfahan University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaleh Varshosaz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shariat, S.Z.A.S., Borzouee, F., Mofid, M.R. et al. Immobilization of lactoperoxidase on graphene oxide nanosheets with improved activity and stability. Biotechnol Lett 40, 1343–1353 (2018). https://doi.org/10.1007/s10529-018-2583-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-018-2583-7

Keywords

Navigation