Skip to main content

Advertisement

Log in

Immobilization of Lactoperoxidase on Graphene Oxide Nanosheets and Copper Oxide Nanoparticles and Evaluation of Their Stability

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Lactoperoxidase (LPO) is a peroxidase enzyme that functions as a natural antibacterial, antiviral, antioxidant and antitumor agent. Stabilization of LPO is a key factor in its industrial applications. In this respect, this work focused on immobilizing LPO on graphene oxide (GO) nanosheets and copper oxide (CuO) nanoparticles using glutaraldehyde, as a cross-linking reagent, and investigating its stability. The Km values of free LPO and LPO immobilized on GO (LPO–GO) and CuO (LPO–CuO) were found to be 53.19, 83.33 and 98.7 mM and their Vmax values equaled to 0.629, 0.504 and 0.41 U/mL min, respectively. The LPO–GO and LPO–CuO samples retained 35 and 12% of their primary activity within 30 days at 25 °C whereas the free enzyme lost its activity after 7 days at the same temperature. Moreover, evaluation of the thermal stability of LPO at 75 °C determined conservation of 24 and 8% of the primary activity of LPO in the LPO–GO and LPO–CuO samples, respectively, after 60 min whereas the free enzyme lost its activity after 5 min. As the findings demonstrated, GO nanosheets are more appropriate for immobilization of LPO, compared with CuO.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Borzouee F, Mofid MR, Varshosaz J, Samsam Shariat SZ (2016) Purification of lactoperoxidase from bovine whey and investigation of kinetic parameters. Adv Biomed Res 5:189–196

    Article  Google Scholar 

  2. Gau J, Furtmüller PG, Obinger C, Prevost M, Van Antwerpen P, Arnhold J, Flemmig J (2016) Flavonoids as promoters of the (pseudo-) halogenating activity of lactoperoxidase and myeloperoxidase. Free Radic Biol Med 97:307–319

    Article  CAS  Google Scholar 

  3. Flemmig J, Gau J, Schlorke D, Arnhold J (2016) Lactoperoxidase as a potential drug target. Expert Opin Ther Targets 20(4):447–461

    Article  CAS  Google Scholar 

  4. Kussendrager KD, van Hooijdonk AC (2000) Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications. Br J Nutr 84(S1): 19–25

    Article  Google Scholar 

  5. Samsam Shariat SZ, Borzouee F, Mofid MR, Varshosaz J (2018) Immobilization of lactoperoxidase on graphene oxide nanosheets with improved activity and stability. Biotech Lett 40(9):1343–1353

    Article  Google Scholar 

  6. Jafary F, Kashanian S, Sharieat ZS, Jafary F, Omidfar K, Paknejad M (2012) Stability improvement of immobilized lactoperoxidase using polyaniline polymer. Mol Biol Rep 39(12):10407–10412

    Article  CAS  Google Scholar 

  7. Ibrahim ASS, Al-Salamah AA, El-Toni AM, Almaary KS, El-Tayeb MA, Elbadawi YB, Antranikian G (2016) Enhancement of alkaline protease activity and stability via covalent immobilization onto hollow core-mesoporous shell silica nanospheres. Int J Mol Sci 17(2):184

    Article  Google Scholar 

  8. Lee HR, Chung M, Kim MI, Ha SH (2017) Preparation of glutaraldehyde-treated lipase-inorganic hybrid nanoflowers and their catalytic performance as immobilized enzymes. Enzyme Microbe Technol 105:24–29

    Article  CAS  Google Scholar 

  9. Gu X, Gao J, Li X, Wang Y (2018) Immobilization of Papain onto graphene oxide nanosheets. J Nanosci Nanotechnol 18(5):3543–3547

    Article  CAS  Google Scholar 

  10. Simsikova M (2016) Interaction of graphene oxide with albumins: effect of size, pH, and temperature. Arch Biochem Biophys 593:69–79

    Article  CAS  Google Scholar 

  11. Gu X, Peng J (2018) Preparation of NH2-functionalized graphene oxide nanosheets for immobilization of NADH oxidase. J Nanosci Nanotechnol 18(6):3888–3892

    Article  CAS  Google Scholar 

  12. Hong S-G, Kim JH, Kim RE, Kwon S-J, Kim DW, Jung H-T, Dordick JS, Kim J (2016) Immobilization of glucose oxidase on graphene oxide for highly sensitive biosensors. Biotechnol Bioprocess Eng 21(4):573–579

    Article  CAS  Google Scholar 

  13. Bolibok P, Wiśniewski M, Roszek K, Terzyk AP (2017) Controlling enzymatic activity by immobilization on graphene oxide. Sci Nat 104(3–4):36

    Article  Google Scholar 

  14. Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomat 9(12):9243–9257

    Article  CAS  Google Scholar 

  15. Singh N, Srivastava G, Talat M, Raghubanshi H, Srivastava ON, Kayastha AM (2014) Cicer α- galactosidase immobilization onto functionalized graphene nanosheets using response surface method and its applications. Food Chem 142:430–438

    Article  CAS  Google Scholar 

  16. Kishore D, Talat M, Srivastava ON, Kayastha AM (2012) Immobilization of β-galactosidase onto functionalized graphene nano-sheets using response surface methodology and its analytical applications. PLoS ONE 7(7):e40708

    Article  CAS  Google Scholar 

  17. Srivastava G, Singh K, Talat M, Srivastava ON, Kayastha AM (2014) Functionalized graphene sheets as immobilization matrix for fenugreek β-Amylase: enzyme kinetics and stability studies. PLoS ONE 9(11):e113408

    Article  Google Scholar 

  18. Shi X, Gu W, Li B, Chen N, Zhao K, Xian Y (2014) Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchim Acta 181(1–2):1–22

    Article  CAS  Google Scholar 

  19. Singh PK, Kumar P, Hussain M, Das AK, Nayak GC (2016) Synthesis and characterization of CuO nanoparticles using strong base electrolyte through electrochemical discharge process. Bull Mater Sci 39(2):469–478

    Article  CAS  Google Scholar 

  20. Kazemi S, Khajeh K (2011) Electrochemical studies of a novel biosensor based on the CuO nanoparticles coated with horseradish peroxidase to determine the concentration of phenolic compounds. J Iran Chem Soc 8(1):S152–S160

    Article  CAS  Google Scholar 

  21. Galhardi CM, Diniz YS, Faine LA, Rodrigues HG, Burneiko RCM, Ribas BO, Novelli ELB (2004) Toxicity of copper intake: lipid profile, oxidative stress and susceptibility to renal dysfunction. Food Chem Toxicol 42:2053–2060

    Article  CAS  Google Scholar 

  22. Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S (2009) Size-dependent endocytosis of nanoparticles. Adv Mater 21:419–424

    Article  Google Scholar 

  23. Fong BY, Norris CS, Palmano KP (2008) Fractionation of bovine whey proteins and characterisation by proteomic techniques. Int Dairy J 18(1):23–46

    Article  CAS  Google Scholar 

  24. Su R, Shi P, Zhu M, Hong F, Li D (2012) Studies on the properties of graphene oxide-alkaline protease bio-composites. Bioresour Technol 115:136–140

    Article  CAS  Google Scholar 

  25. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  Google Scholar 

  26. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  27. Chance B, Maehly A (1955) [136] Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  28. Koksal E (2011) Peroxidase from leaves of spinach (Spinacia oleracea): partial purification and some biochemical properties. Int J Pharmacol 7(1):135–139

    Article  CAS  Google Scholar 

  29. Aghelan Z, Shariat SZS (2015) Partial purification and biochemical characterization of peroxidase from rosemary (Rosmarinus officinalis L.) leaves. Adv Biomed Res 4:1–6

    Article  Google Scholar 

  30. Nandini K, Rastogi NK (2011) Integrated downstream processing of lactoperoxidase from milk whey involving aqueous two-phase extraction and ultrasound-assisted ultrafiltration. Appl Biochem Biotechnol 163(1):173–185

    Article  CAS  Google Scholar 

  31. Uguz M, Ozdemir H (2005) Purification of bovine milk lactoperoxidase and investigation of antibacterial properties at different thiocyanate mediated. Appl Biochem Microbiol 41(4):349–353

    Article  CAS  Google Scholar 

  32. Mecitoglu C, Yemenicioglu A (2007) Partial purification and preparation of bovine lactoperoxidase and characterization of kinetic properties of its immobilized form incorporated into cross-linked alginate films. Food Chem 104(2):726–733

    Article  Google Scholar 

  33. Chen W, Yan L, Bangal PR (2010) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48(4):1146–1152

    Article  CAS  Google Scholar 

  34. Singh N, Srivastava G, Talat M, Raghubanshi H, Srivastava ON, Kayastha AM (2014) Cicer a-galactosidase immobilization onto functionalized graphene nanosheets using response surface method and its applications. Food Chem 142:430–438

    Article  CAS  Google Scholar 

  35. Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39(8):549–559

    Article  CAS  Google Scholar 

  36. Tenovuo J, Kurkijärvi K (1981) Immobilized lactoperoxidase as a biologically active and stable form of an antimicrobial enzyme. Arch Oral Biol 26(4):309–314

    Article  CAS  Google Scholar 

  37. Saleh A, Majed H, Yaaser Q, Ibrahim H (2017) Immobilization of horseradish peroxidase on Fe3O4 magnetic nanoparticles. Electron J Biotechnol 27:84–90

    Article  Google Scholar 

  38. Kishore D, Talat M, Srivastava ON, Kayastha AM (2012) Immobilization of b-galactosidase onto functionalized graphene nano-sheets using response surface methodology and its analytical applications. PLoS ONE 7(7):e40708

    Article  CAS  Google Scholar 

  39. Preety V, Hooda V (2017) Increasing the efficiency of immobilization and chitin determination using copper oxide nanoparticles. Talanta 168:246–256

    Article  CAS  Google Scholar 

  40. Mirouliaei M, Nayyeri H, Samsam SS, Movahedian AA (2007) Biospecific immobilization of lactoperoxidase on Con A-Sepharose 4B. Sci Iran 14:303–307

    Google Scholar 

  41. Boscolo B, Leal SS, Ghibaudi EM, Gomes CM (2007) Lactoperoxidase folding and catalysis relies on the stabilization of the α-helix rich core domain: a thermal unfolding study. Biochim Biophys Acta Proteins Proteomics 1774(9):1164–1172

    Article  CAS  Google Scholar 

  42. Zhang F, Zheng B, Zhang J, Huang X, Liu H, Guo S, Zhang J (2010) Horseradish peroxidase immobilized on graphene oxide: physical properties and applications in phenolic compound removal. J Phys Chem 114(18):8469–8473

    Article  CAS  Google Scholar 

  43. Zhang G, Ma J, Wang J, Li Y, Zhang G, Zhang F, Fan X (2014) Lipase immobilized on graphene oxide as reusable biocatalyst. Ind Eng Chem Res 53(51):19878–19883

    Article  CAS  Google Scholar 

  44. Hermanová S, Zarevucka M, Bousa D, Pumera M, Sofer Z (2015) Graphene oxide immobilized enzymes show high thermal and solvent stability. Nanoscale 7(13):5852–5858

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Biology, Payame Noor University of Isfahan for their cooperation and supplying the experimental equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ziyae Aldin Samsam Shariat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Movahedi, M., Samsam Shariat, S.Z.A. & Nazem, H. Immobilization of Lactoperoxidase on Graphene Oxide Nanosheets and Copper Oxide Nanoparticles and Evaluation of Their Stability. Catal Lett 149, 562–573 (2019). https://doi.org/10.1007/s10562-018-2620-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2620-0

Keywords

Navigation