Skip to main content
Log in

Integrated Downstream Processing of Lactoperoxidase from Milk Whey Involving Aqueous Two-Phase Extraction and Ultrasound-Assisted Ultrafiltration

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present work involves the adoption of an integrated approach for the purification of lactoperoxidase from milk whey by coupling aqueous two-phase extraction (ATPE) with ultrasound-assisted ultrafiltration. The effect of system parameters of ATPE such as type of phase system, polyethylene glycol (PEG) molecular mass, system pH, tie line length and phase volume ratio was evaluated so as to obtain differential partitioning of contaminant proteins and lactoperoxidase in top and bottom phases, respectively. PEG 6000-potassium phosphate system was found to be suitable for the maximum activity recovery of lactoperoxidase 150.70% leading to 2.31-fold purity. Further, concentration and purification of enzyme was attempted using ultrafiltration. The activity recovery and purification factor achieved after ultrafiltration were 149.85% and 3.53-fold, respectively. To optimise productivity and cost-effectiveness of integrated process, influence of ultrasound for the enhancement of permeate flux during ultrafiltration was also investigated. Intermittent use of ultrasound along with stirring (2 min acoustic and 2 min stirring) resulted in increased permeate flux from 0.94 to 2.18 l/m2 h in comparison to the ultrafiltration without ultrasound. The use of ultrasound during ultrafiltration resulted in increase in flux, but there was no significant change in activity recovery and purification factor. The integrated approach involving ATPE and ultrafiltration may prove to be a feasible method for the downstream processing of lactoperoxidase from milk whey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kussendrager, K. D., & Hooijdonk, A. C. M. (2000). Br J Nutr, 84, 19–25.

    Article  Google Scholar 

  2. Elliot, R. M., McLay, J. C., Kennedy, M. J., & Simmond, R. S. (2004). Int J Food Microbiol, 91, 73–81.

    Article  CAS  Google Scholar 

  3. Touch, V., Hayakawa, S., Yamada, S., & Kaneko, S. (2004). Int J Food Microbiol, 93, 175–183.

    Article  CAS  Google Scholar 

  4. Andersson, J., & Mattiasson, B. (2006). J Chromatogr A, 1107, 88–95.

    Article  CAS  Google Scholar 

  5. Min, S., Krochta, J. M., & Rumsey, T. R. (2007). J Food Eng, 80, 1116–1124.

    Article  CAS  Google Scholar 

  6. Ozdemir, H., Aygul, I., & Küfrevioglu, O. I. (2001). Prep Biochem Biotechnol, 31, 125–134.

    Article  CAS  Google Scholar 

  7. Doultani, S., Turhan, K. N., & Etzel, M. R. (2004). Process Biochem, 39, 1737–1743.

    Article  CAS  Google Scholar 

  8. Billakanti, J. M., & Fee, C. J. (2009). Biotechnol Bioeng, 103, 1155–1163.

    Article  CAS  Google Scholar 

  9. Nandini, K. E., & Rastogi, N. K. (2010). Biotechnology Progress, 26, 763–771.

    Article  CAS  Google Scholar 

  10. Souza, R. L. D., Barbosa, J. M. P., Zanin, G. M., Lobão, M. W. N., Soares, C. M. F., & Lima, Á. S. (2010). Applied Biochemistry and Biotechnology, 161, 288–300. doi:10.1007/s12010-010-8907-2.

    Article  CAS  Google Scholar 

  11. Rajni, H. K. (2000). Aqueous two phase systems methods and protocols. Hoboken: Humana.

    Google Scholar 

  12. Nandini, K. E., & Rastogi, N. K. (2009). Process Biochem, 44, 1172–1176.

    Article  CAS  Google Scholar 

  13. Raghavarao, K. S. M. S., Rastogi, N. K., Gowathman, M. K., & Karanth, N. G. (1995). Advances in applied microbiology, vol 41 (pp. 97–172). New York: Academic.

    Book  Google Scholar 

  14. Simon, A., Penpenic, L., Gondrexon, N., Taha, S., & Dorange, G. (2000). Ultrason Sonochem, 7, 183–186.

    Article  CAS  Google Scholar 

  15. Smythe, M. C., & Wakeman, R. J. (2000). Ultrasonics, 38, 657–661.

    Article  CAS  Google Scholar 

  16. Saxena, A., Tripathi, B. P., Kumar, M., & Shahi, V. K. (2009). Adv Colloid Interface Sci, 145, 1–22.

    Article  CAS  Google Scholar 

  17. Muthukumaran, S., Kentish, S. E., Ashokkumar, M., & Stevens, G. W. (2005). J Membr Sci, 258, 106–114.

    Article  CAS  Google Scholar 

  18. Chen, D., Weavers, L. K., Walker, H. W., & Lenhart, J. J. (2006). J Membr Sci, 276, 135–144.

    Article  CAS  Google Scholar 

  19. Teng, M. Y., Lin, S. H., Wu, C. Y., & Juang, R. S. (2006). J Membr Sci, 281, 103–110.

    Article  CAS  Google Scholar 

  20. Albertson, P. Å. (1986). Partition of Cell Particles and Macromolecules (3rd ed.). New York: Wiley.

    Google Scholar 

  21. Zaslavsky, B. Y. (1995). Aqueous two-phase partitioning, physical chemistry and bioanalytical applications. New York: Marcel Dekker.

    Google Scholar 

  22. Nandini, K. E., & Rastogi, N. K. (2009). Food and Bioprocess Technology, doi: 10.1007/s11947-008-0160-0.

  23. Morrison, M. (1970). In H. Tabor & C. Tabor (Eds.), Methods in Enzymology (pp. 653–657). New York: Academic.

    Google Scholar 

  24. Bradford, M. M. (1976). Anal Biochem, 72, 248–254.

    Article  CAS  Google Scholar 

  25. Marcos, J. C., Fonseca, L. P., Ramalho, M. T., & Cabral, J. M. S. (1999). J Chromatogr B, 734, 15–22.

    Article  CAS  Google Scholar 

  26. Deuscher, M. (1990). Electrophoretic Methods, 182, 425–488.

    Google Scholar 

  27. Chen, J. P. (1992). J Ferment Bioeng, 73, 140–147.

    Article  CAS  Google Scholar 

  28. Palomares, M., & Hernandez, M. (1998). J Chromatogr B, 711, 81–90.

    Article  Google Scholar 

  29. Anandharamakrishna, C., Raghavendra, S. N., Barhate, R. S., Hanumesh, U., & Raghavarao, K. S. M. S. (2005). Food Bioprod Process, 83, 191–197.

    Article  CAS  Google Scholar 

  30. Babu, B. R., Rastogi, N. K., & Raghavarao, K. S. M. S. (2008). Chem Eng Process, 47, 83–89.

    CAS  Google Scholar 

  31. Fuda, E., Jauregi, P., & Pyle, D. L. (2004). Biotechnol Prog, 20, 514–525.

    Article  CAS  Google Scholar 

  32. Nielsen, A. H., Justesen, S. F. L., & Thomas, O. R. T. (2004). J Biotechnol, 113, 247–262.

    Article  CAS  Google Scholar 

  33. Benavides, J., & Palomares, M. (2004). J Chromatogr B, 807, 33–38.

    Article  CAS  Google Scholar 

  34. Mayerhoff, Z. D. V. L., Roberto, I. C., & Franco, T. T. (2004). Biochem Eng J, 18, 217–223.

    Article  CAS  Google Scholar 

  35. Porto, T. S., Silva, M. G. M., Porto, C. S., Cavalcanti, M. T. H., Neto, B. B., Lima, F. J. L., et al. (2008). Chem Eng Process, 47, 716–721.

    CAS  Google Scholar 

  36. Cavalcanti, M. T. H., Porto, T. S., Neto, B. B., Lima, F. J. L., Porto, A. L. F., & Pessoa, J. A. (2006). Journal of Chromatogrphy B, 833, 135–140.

    Article  CAS  Google Scholar 

  37. Chaves, A. C., Silva, L. N., Abath, F. G. C., Pereira, V. R. A., Filho, J. L. L., Porto, A. L. F., et al. (2000). Bioprocess Eng, 23, 435–438.

    Article  CAS  Google Scholar 

  38. Chethana, S., Nayak, C. A., & Raghavarao, K. S. M. S. (2007). J Food Eng, 81, 679–687.

    Article  CAS  Google Scholar 

  39. Kyllonen, H. M., Pirkonen, P., & Nystrom, M. (2007). Desalination, 181, 319–335.

    Article  CAS  Google Scholar 

  40. Cai, M., Wang, S., Zheng, Y., & Liang, H. (2009). Effects of ultrasound on ultrafiltration of Radix astragalus extract and cleaning of fouled membrane. Sep Purif Technol, 68, 351–356.

    Article  CAS  Google Scholar 

  41. Juang, R. S., & Lin, K. H. (2004). J Membr Sci, 243, 115–124.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors thank Dr. V. Prakash, Director, CFTRI, Mysore for encouragement. Authors thank Dr. K.S.M.S. Raghavarao, Head, Department of Food Engineering for valuable suggestions. The author Nandini expresses her gratitude and sincere thanks to the Council of Scientific and Industrial Research (CSIR), New Delhi, India for providing senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navin K. Rastogi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandini, K.E., Rastogi, N.K. Integrated Downstream Processing of Lactoperoxidase from Milk Whey Involving Aqueous Two-Phase Extraction and Ultrasound-Assisted Ultrafiltration. Appl Biochem Biotechnol 163, 173–185 (2011). https://doi.org/10.1007/s12010-010-9026-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9026-9

Keywords

Navigation