Skip to main content
Log in

Purification of Bovine Milk Lactoperoxidase and Investigation of Antibacterial Properties at Different Thiocyanate Mediated

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Bovine lactoperoxidase (LPO) was purified with amberlite CG 50 H+ resin, CM sephadex C-50 ion-exchange chromatography, and sephadex G-100 gel filtration chromatography from skim milk. The activity of lactoperoxidase was measured by using 2.2-azino-bis(3-ethylbenzthiazoline-6 sulfonic acid) diammonium salt (ABTS) as a choromogenic substrate at pH 6.0. Purification degree for the purified enzyme was controlled with SDS-PAGE and R z value (A 412/A 280). R z value for the purified LPO was 0.8. K m value at pH 6.0 at 20° C for the LPO was 0.20 mM. V max value was 7.87 μmol/ml min at pH 6.0 at 20°C. Bovine LPO showed high antibacterial activity in 100 mM thiocyanate -100 mM H2O2 medium for some pathogenic bacteria, such as Aeromonas hydrophila ATCC 7966, Micrococcus luteus LA 2971, Mycobacterium smegmatis RUT, Bacillus subtilis IMG 22, Pseudomonas pyocyanea, Bacillus subtilis var. niger ATCC 10, Pseudomonas aeruginosa ATCC 27853, Enterococcus faecalis ATCC 15753, Bacillus brevis FMC3, Klebsiella pneumoniae FMC 5, Corynebacterium xerosis UC 9165, Bacillus cereus EU, Bacillus megaterium NRS, Yersinia enterocolytica, Listeria monocytogenes scoot A, Bacillus megaterium EU, Bacillus megaterium DSM32, Klebsiella oxytocica, Staphylococcus aerogenes, Streptococcus faecalis, Mycobacterium smegmatis CCM 2067 and compared with well known antibacterial substances such as penicilline, ampicilline, amoxicillin-clavulanate and ceftriaxon. The LPO-100 mM thiocyanate-100 mM H2O2 system was purposed as an effective agent against many of the diseases causing organisms in human and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ueda, T., Sakamaki, K., Kuroki, T., Yano, I., and Nagata, S., Eur. J. Biochem., 1976, vol. 243, pp. 32–41.

    Google Scholar 

  2. Kumar, R. and Bhatla, K.L., Acta Crystallogr., 1995, vol. D51, pp. 1094–1096.

    Google Scholar 

  3. Hamon, C.B. and Klebanoff, S.I., J. Exp. Med., 1973, vol. 134, pp. 438–441.

    Google Scholar 

  4. Golhefors, L. and Marklundi, S., Infect. Immun., 1975, vol. 11, pp. 1210–1215.

    Google Scholar 

  5. Reiter, B. and Perraudin, J.P., in Peroxidase in Chemistry and Biology, Everse, J., Everse, K.E., and Grisham, M.B., Eds., Boca Raton: CRC, 1991, pp. 143–180.

    Google Scholar 

  6. Morrisson, M., Bayse, G., and Danner, D.J., Biochemistry, 1970, vol. 9, pp. 2995–3000.

    Google Scholar 

  7. Cals, M., Maillierat, P., Birignon, G., Anglade, P., and Dumas, B.R., Eur. J. Biochem., 1991, vol. 198, pp. 733–739.

    Google Scholar 

  8. Paul, K.G., Ohlsson, P.I., and Henriksson, A., FEBS Lett., 1980, vol. 110, pp. 200–204.

    Google Scholar 

  9. Dewil, J.N. and Van Hooydonk, A.C.M., Netherlands Milk Dairy, 1996, vol. 50, pp. 227–244.

    Google Scholar 

  10. Caristrom, A., Biochem. Biophys. Acta, 1969, vol. 23, pp. 185–202.

    Google Scholar 

  11. Shin, K., Tomita, M., and Lonnerdal, B., J. Nutr. Biochem, 2000, vol. 11, pp. 95–101.

    Google Scholar 

  12. Morin, D.E., Rowan, L.L., and Hurley, W.L., Small Ruminnat Res., 1995, vol. 17, pp. 255–261.

    Google Scholar 

  13. Elagamy, E.I., Food Chem., 2000, vol. 68, pp. 227–232.

    Google Scholar 

  14. Jacop, B.M., Antony, E., Srekumar, B., and Haridas, M., Life Sci., 2000, vol. 66, pp. 2433–2439.

    Google Scholar 

  15. Jacob, B.M., Manoj, N.K., and Haridas, M., Ind. J. Exp. Biol., 1998, vol. 36, pp. 808–810.

    Google Scholar 

  16. Frank, J.F. and Hassan, A.N., Apply Dairy Microbiology, 1998, vol. 5, pp. 131–172.

    Google Scholar 

  17. Dumonte, C. and Rousst, B., J. Biol. Chem., 1983, vol. 258, pp. 14166–14172.

    Google Scholar 

  18. Ozdemir, H., Aygul, I., and Kufrevioglu, O.I., Preb. Biochem. Biotech., 2001, vol. 31, no.2, pp. 125–134.

    Google Scholar 

  19. Shindler, J.S. and Bardsley, W.G., Biochem. Biophys. Res. Commun., 1975, vol. 67, pp. 1307–1312.

    Google Scholar 

  20. Segel, I.E., Enzyme Kinetics, Toronto: John Wiley and Sons, 1968, p. 403.

    Google Scholar 

  21. Laemmli, D.K., Nature (London), 1970, vol. 227, pp. 680–685.

    Google Scholar 

  22. Haddain, M.S., Ibrahim, S.A., and Robinson, R.K., Food Control, 1996, vol. 7, pp. 149–152.

    Google Scholar 

  23. Kamau, D.N., Doores, S., and Puruitt, K.M., Appl. Environ. Microbiol., 1990, vol. 56, pp. 2711–2716.

    Google Scholar 

  24. Reiter, B., Int. Dairy Feder. Bull., 1985, vol. 191, pp. 2–35.

    Google Scholar 

  25. Aune, T.M. and Thomas, E.L., Eur. J. Biochem., 1977, vol. 80, pp. 209–214.

    Google Scholar 

  26. Ozdemir, H., Hacbeyoglu, H.I., and Uslu, H., Preb. Biochem. Biotechnol., 2002, vol. 32, no.2, pp. 143–155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

From Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 4, 2005, pp. 397–401.

Original English Text Copyright © 2005 by Uguz, Ozdemir.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uguz, M.T., Ozdemir, H. Purification of Bovine Milk Lactoperoxidase and Investigation of Antibacterial Properties at Different Thiocyanate Mediated. Appl Biochem Microbiol 41, 349–353 (2005). https://doi.org/10.1007/s10438-005-0059-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10438-005-0059-8

Keywords

Navigation