Skip to main content
Log in

Effective property of piezoelectric composites containing coated nano-elliptical fibers with interfacial debonding

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Based on both the spring layer interface model and the Gurtin-Murdoch surface/interface model, the anti-plane shear problem is studied for piezoelectric composites containing coated nano-elliptical fibers with imperfect interfaces. By using the complex function method and the technique of conformal mapping, the exact solutions of the electroelastic fields in fiber, coating, and matrix of piezoelectric nanocomposites are derived under far-field anti-plane mechanical and in-plane electrical loads. Furthermore, the generalized self-consistent method is used to accurately predict the effective electroelastic moduli of the piezoelectric nanocomposites containing coated nano-elliptical fibers with imperfect interfaces. Numerical examples are illustrated to show the effects of the material constants of the imperfect interface layers, the aspect ratio of the fiber section, and the fiber volume fraction on the effective electroelastic moduli of the piezoelectric nanocomposites. The results indicate that the effective electroelastic moduli of the piezoelectric nanocomposites can be significantly reduced by the interfacial debonding, but it can be improved by the surface/interface stresses at the small scale, which provides important theoretical reference for the design and optimization of piezoelectric nanodevices and nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WONG, E. W., SHEEHAN, P. E., and LIEBER, C. M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 277(5334), 1971–1975 (1997)

    Article  Google Scholar 

  2. TIAN, R., LIU, J. X., PAN, E., WANG, Y. S., and SOH, A. K. Some characteristics of elastic waves in a piezoelectric semiconductor plate. Journal of Applied Physics, 126(12), 125701 (2019)

    Article  Google Scholar 

  3. DUNN, C. M. and TAYA, M. Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. International Journal of Solids and Structures, 30(2), 161–175 (1993)

    Article  MATH  Google Scholar 

  4. PAK, Y. E. Circular inclusion problem in antiplane piezoelectricity. International Journal of Solids and Structures, 29(19), 2403–2419 (1992)

    Article  MATH  Google Scholar 

  5. CHAO, C. K. and CHANG, K. J. Interacting circular inclusions in antiplane piezoelectricity. International Journal of Solids and Structures, 136(22), 3349–3373 (1999)

    Article  MATH  Google Scholar 

  6. JIANG, B. and FANG, D. N. The effective properties of piezoelectric composite materials with transversely isotropic spherical inclusions. Applied Mathematics and Mechanics (English Edition), 20(4), 388–399 (1999) https://doi.org/10.1007/BF02458565

    Article  MATH  Google Scholar 

  7. JIANG, C. P. and CHEUNG, Y. K. An exact solution for the three-phase piezoelectric cylinder model under antiplane shear and its applications to piezoelectric composites. International Journal of Solids and Structures, 38(28–29), 4777–4796 (2001)

    Article  MATH  Google Scholar 

  8. FANG, X. Q., LIU, J. X., and GUPTA, V. Fundamental formulations and recent achievements in piezoelectric nano-structures: a review. Nanoscale, 5(5), 1716–1726 (2013)

    Article  Google Scholar 

  9. ZHOU, K., HOH, H. J., WANG, X., KEER, L. M., PANG, J. H., SONG, B., and WANG, Q. J. A review of recent works on inclusions. Mechanics of Materials, 60, 144–158 (2013)

    Article  Google Scholar 

  10. GUO, J. H., ZHANG, Z. Y., and XING, Y. M. Antiplane analysis for an elliptical inclusion in 1D hexagonal piezoelectric quasicrystal composites. Philosophical Magazine, 96(4), 349–369 (2016)

    Article  Google Scholar 

  11. LOBODA, V. V., KRYVORUCHKOR, A. G., and SHEVELEVA, A. Y. Electrically plane and mechanically antiplane problem for an inclusion with stepwise rigidity between piezoelectric materials. Problems of Nonlinear Mechanics and Physics of Materials, Springer, Cham, 463–481 (2019)

    Chapter  Google Scholar 

  12. LI, G. C. and XUE, X. P. Controllability of evolution inclusions with nonlocal conditions. Applied Mathematics and Computation, 141(2–3), 375–384 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. LURIE, S., SOLYAEV, Y., and SHRAMKO, K. Comparison between the Mori-Tanaka and generalized self-consistent methods in the framework of anti-plane strain inclusion problem in strain gradient elasticity. Mechanics of Materials, 122, 133–144 (2018)

    Article  Google Scholar 

  14. LUBARDA, V. Circular inclusions in anti-plane strain couple stress elasticity. International Journal of Solids and Structures, 40(15), 3827–3851 (2003)

    Article  MATH  Google Scholar 

  15. GURTIN, M. E. and MURDOCH, A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4), 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. CHEN, T. Y. Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects. Acta Mechanica, 196(3), 205–217 (2008)

    Article  MATH  Google Scholar 

  17. XIAO, J. H., XU, Y. L., and ZHANG, F. C. Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect. Acta Mechanica, 222(1), 59–67 (2011)

    Article  MATH  Google Scholar 

  18. HUANG, M. J., FANG, X. Q., LIU, J. X., FENG, W. J., and ZHAO, Y. M. Size-dependent effective properties of anisotropic piezoelectric composites with piezoelectric nano-particles. Smart Materials and Structures, 24(1), 015005 (2014)

    Article  Google Scholar 

  19. FANG, X. Q., HUANG, M. J., ZHU, Z. T., LIU, J. X., and FENG, W. J. Dynamic effective elastic modulus of polymer matrix composites with dense piezoelectric nano-fibers considering surface/interface effect. Science China-Physics Mechanics & Astronomy, 58(1), 1–8 (2015)

    Article  Google Scholar 

  20. SHAN, H. Z. and CHOU, T. W. Transverse elastic moduli of unidirectional fiber composites with fiber/matrix interfacial debonding. Composites Science and Technology, 53(4), 383–391 (1995)

    Article  Google Scholar 

  21. WANG, X. and PAN, E. Magnetoelectric effects in multiferroic fibrous composite with imperfect interface. Physical Review B, 76(21), 214107 (2007)

    Article  Google Scholar 

  22. WANG, X. and PAN, E. Two-dimensional Eshelby’s problem for two imperfectly bonded piezoelectric half-planes. International Journal of Solids and Structures, 47(1), 148–160 (2010)

    Article  MATH  Google Scholar 

  23. LÓPEZ-REALPOZO, J. C., RODRÍGUEZ-ROMOS, R., RAÚL GUINOVART-DÍAZ, R., BRAVO-CASTILLERO, J., and SABINA, F. J. Transport properties in fibrous elastic rhombic composite with imperfect contact condition. International Journal of Mechanical Sciences, 53(2), 98–107 (2011)

    Article  MATH  Google Scholar 

  24. SHI, Y., WAN, Y. P., and ZHONG, Z. Effective properties of coated fibrous piezoelectric composites with spring-type interfaces under anti-plane mechanical and in-plane electrical loads. Science China-Physics Mechanics & Astronomy, 59(10), 1–8 (2016)

    Article  Google Scholar 

  25. WANG, Y. Z. Influences of imperfect interfaces on effective properties of multiferroic composites with coated inclusion. Mechanics Research Communications, 77, 5–11 (2016)

    Article  Google Scholar 

  26. TIAN, W. L., FU, M. W., QI, L. H., and RUAN, H. H. Micro-mechanical model for the effective thermal conductivity of the multi-oriented inclusions reinforced composites with imperfect interfaces. International Journal of Heat and Mass Transfer, 148, 119167 (2020)

    Article  Google Scholar 

  27. HERVÉ-LUANCO, E. Elastic behaviour of multiply coated fibre-reinforced composites: simplification of the (n + 1)-phase model and extension to imperfect interfaces. International Journal of Solids and Structures, 196, 10–25 (2020)

    Article  Google Scholar 

  28. HU, K. Q., MEGUID, S. A., ZHONG, Z., and GAO, C. F. Partially debonded circular inclusion in one-dimensional quasicrystal material with piezoelectric effect. International Journal of Mechanics and Materials in Design, 16(4), 749–766 (2020)

    Article  Google Scholar 

  29. GAO, M. Y., YANG, B., HUANG, Y. L., and WANG, G. N. Effects of general imperfect interface/interphase on the in-plane conductivity of thermal composites. International Journal of Heat and Mass Transfer, 172, 121213 (2021)

    Article  Google Scholar 

  30. NGUYEN, D. H., QUANG, H. L., HE, Q. C., and TRAN, A. T. Generalized Hill-Mendel lemma and equivalent inclusion method for determining the effective thermal conductivity of composites with imperfect interfaces. Applied Mathematical Modelling, 90, 624–649 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. SHI, P. P. Imperfect interface effect for nano-composites accounting for fiber section shape under antiplane shear. Applied Mathematical Modelling, 43, 393–408 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. TIERSTEN, H. F. Linear Piezoelectric Plate Vibrations, Plenum Press, New York (1969)

    Book  Google Scholar 

  33. SHI, Y., WAN, Y. P., and ZHONG, Z. Variational bounds for the effective electroelastic moduli of piezoelectric composites with electromechanical coupling spring-type interfaces. Mechanics of Materials, 72, 72–93 (2014)

    Article  Google Scholar 

  34. MAI, A. K. and BOSE, S. K. Dynamic elastic moduli of a suspension of imperfectly bonded spheres. Proceedings of the Cambridge Philosophical Society, 76(3), 587–600 (1974)

    Article  MATH  Google Scholar 

  35. RODRIGUEZ-RAMOS, R., GUINOVART-DIAZ, R., LOPEZ-REALPOZO, J. C., BRAVO-CASTILLERO, J., OTERO, J., SABINA, F. J., and LEBON, F. Effective properties of periodic fibrous electro-elastic composites with mechanic imperfect contact condition. International Journal of Mechanical Sciences, 73, 1–13 (2013)

    Article  Google Scholar 

  36. GURTIN, M. E. and MURDOCH, A. I. Surface stress in solids. International Journal of Solids and Structures, 14(6), 431–440 (1978)

    Article  MATH  Google Scholar 

  37. HUANG, G. Y. and YU, S. W. Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Physica Status Solidi (b), 243(4), R22–R24 (2006)

    Article  Google Scholar 

  38. HU, S. L. and SHEN, S. P. Electric field gradient theory with surface effect for nano-dielectrics. Computers, Materials & Continua (CMC), 13(1), 63 (2009)

    Google Scholar 

  39. WANG, X. and SUDAK, L. J. A piezoelectric screw dislocation interacting with an imperfect piezoelectric bimaterial interface. International Journal of Solids and Structures, 44(10), 3344–3358 (2006)

    Article  MATH  Google Scholar 

  40. LÓPEZ-REALPOZO, J. C., RODRÍGUEZ-RAMOS, R., QUINTERO-ROBA, A. J., BRITO-SANTANA, H., GUINOVART-DÍAZ, R., VOLNEI, T., LEBON, F., CAMACHO-MONTES, H., ESPINOSA-ALMEYDA, Y., BRAVO-CASTILLERO, J., and SABINA, F. J. Behavior of piezoelectric layered composites with mechanical and electrical non-uniform imperfect contacts. Meccanica, 55(1), 125–138 (2020)

    Article  MathSciNet  Google Scholar 

  41. LI, Z. K., HE, Y. M., LEI, J., GUO, S., LIU, D. B., and WANG, L. A standard experimental method for determining the material length scale based on modified couple stress theory. International Journal of Mechanical Sciences, 141, 198–205 (2014)

    Article  Google Scholar 

  42. KHORSHIDI, M. A. The material length scale parameter used in couple stress theories is not a material constant. International Journal of Engineering Science, 133, 15–25 (2018)

    Article  Google Scholar 

  43. FANG, X. Q., HUANG, M. J., LIU, J. X., and NIE, G. Q. Electro-mechanical coupling properties of piezoelectric nanocomposites with coated elliptical nano-fibers under anti-plane shear. Journal of Applied Physics, 115(6), 064306 (2014)

    Article  Google Scholar 

  44. WANG, L. Y., WANG, F. C., YANG, F. Q., and WU, H. A. Molecular kinetic theory of boundary slip on textured surfaces by molecular dynamics simulations. Science China-Physics Mechanics & Astronomy, 57(11), 2152–2160 (2014)

    Article  Google Scholar 

  45. WANG, Z., JIN, X. Y., CHEN, W. Q., ZHANG, C., FU, C. Q., and GONG, H. Y. Micro-scaled size-dependence of the effective properties of 0–3 PZT-cement composites: experiments and modeling. Composites Science and Technology, 105, 183–189 (2014)

    Article  Google Scholar 

  46. LI, D., WANG, F., CHAO, Y., ZHEN, Y., and ZHAO, Y. P. How to identify dislocations in molecular dynamics simulations? Science China-Physics Mechanics & Astronomy, 57(12), 2177–2187 (2014)

    Article  Google Scholar 

  47. JIANG, C. P., TONG, Z. H., and CHEUNG, Y. K. A generalized self-consistent method for piezoelectric fiber reinforced composites under antiplane shear. Mechanics of Materials, 33(5), 295–308 (2001)

    Article  Google Scholar 

  48. CHEN, T. Y. Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects. Acta Mechanica, 196(3), 205–217 (2008)

    Article  MATH  Google Scholar 

  49. XIAO, J. H., XU, Y. L., and ZHANG, F. C. A generalized self-consistent method for nano composites accounting for fiber section shape under antiplane shear. Mechanics of Materials, 81, 94–100 (2015)

    Article  Google Scholar 

  50. TIAN, L. and RAJAPAKSE, R. K. N. D. Analytical solution for size-dependent elastic field of a nanoscale circular inhomogeneity. Journal of Applied Mechanics, 74(3), 568–574 (2007)

    Article  MATH  Google Scholar 

  51. TANG, T., HORSTEMEYER, M., MARK, F., and WANG, P. Micromechanical analysis of influences of agglomerated nanotube interphase on effective material properties of a three-phase piezoelectric nanocomposite. Supplemental Proceedings: Materials Processing and Interfaces, 1, 307–312 (2012)

    Article  Google Scholar 

  52. BERGER, H., KARI, S., GABBERT, U., RODRIGUEZ-RAMOS, R., BRAVO-CASTILLERO, J., GUINOVART-DIAZ, R., SABINA, F. J., and MAUGIN, G. A. Unit cell models of piezoelectric fiber composites for numerical and analytical calculation of effective properties. Smart Materials and Structures, 15(2), 451 (2006)

    Article  Google Scholar 

  53. HASANZADEH, M., ANSARI, R., and HASSANZADEH-AGHDAM, M. K. Evaluation of effective properties of piezoelectric hybrid composites containing carbon nanotubes. Mechanics of Materials, 129, 63–79 (2019)

    Article  Google Scholar 

  54. HASHIN, Z. and ROSEN, B. W. Single-wall carbon nanotube polymer composites: investigating their percolative behavior and physical performance. ASME International Mechanical Engineering Congress and Exposition, 47004, 307–311 (2004)

    Google Scholar 

Download references

Acknowledgements

The authors extend their gratitude to the Fundamental Research Funds of University Directly under the Autonomous Region (No. JY20220075) for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Guo.

Additional information

Citation: CHEN, Y. and GUO, J. H. Effective property of piezoelectric composites containing coated nano-elliptical fibers with interfacial debonding. Applied Mathematics and Mechanics (English Edition), 43(11), 1701–1716 (2022) https://doi.org/10.1007/s10483-022-2918-9

Project supported by the National Natural Science Foundation of China (Nos. 12072166 and 11862021), the Program for Science and Technology of Inner Mongolia Autonomous Region of China (No. 2021GG0254), the Natural Science Foundation of Inner Mongolia Autonomous Region of China (No. 2020MS01006), and the Independent Research Key Program of Center for Applied Mathematics of Inner Mongolia Autonomous Region of China (No. ZZYJZD2022002)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Guo, J. Effective property of piezoelectric composites containing coated nano-elliptical fibers with interfacial debonding. Appl. Math. Mech.-Engl. Ed. 43, 1701–1716 (2022). https://doi.org/10.1007/s10483-022-2918-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-022-2918-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation