Skip to main content
Log in

Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

We consider the macroscopic behavior of two-phase fibrous piezoelectric composites. The fibers are of circular cross-section with the same radius. Along the interfaces between the fibers and the matrix we consider the effects of surface stress and surface electric displacement. The constituents are transversely isotropic and exhibit pyroelectricity. We find that the overall thermoelectroelastic moduli of these solids must comply with two sets of exact connections. The first set, similar to Hill’s universal connections, provides five constraints between the six axisymmetric overall electroelastic moduli. The second set relates the effective coefficients of thermal stress and pyroelectric coefficients to the effective electroelastic moduli, in analogy with Levin’s formula. In contrast to their conventional counterparts, i.e., without surface effects, the presence of surface effects makes both sets of connections dependent on the absolute size of the nanoinclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Finn R. (1986). Equilibrium capillary surfaces. Springer, New York

    MATH  Google Scholar 

  2. Gibbs J. W. (1928). The collected works of J.W. Gibbs, vol. 1. Longmans, New York, 315

    Google Scholar 

  3. Allara D. L. (2005). A perspective on surfaces and interfaces. Nature 437: 638–639

    Article  Google Scholar 

  4. Miller R. E. and Shenoy V. B. (2000). Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11: 139–147

    Article  Google Scholar 

  5. Gurtin, M. E., Murdoch, A. I.: A continuum theory of elastic material surfaces. Arch. Ration Mech. Anal. 57, 291–323 and 389–390 (1975).

    Google Scholar 

  6. Cammarata R. C. (1994). Surface and interface stress effects in thin films. Prog. Surf. Sci. 46: 1–38

    Article  Google Scholar 

  7. Shuttleworth R. (1950). The surface tension of solids. Proc. Phys. Soc. A 63: 444–457

    Article  Google Scholar 

  8. Nix W. D. and Gao H. (1998). An atomistic interpretation of interface stress. Scr. Mater. 39: 1653–1661

    Article  Google Scholar 

  9. Freund L. B. and Suresh S. (2003). Thin film materials: stress, defect formation and surface evolution. Cambridge University Press, Cambridge

    Google Scholar 

  10. Sharma P., Ganti S. and Bhate N. (2003). Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82: 535–537

    Article  Google Scholar 

  11. Chen T., Dvorak G. J. and Yu C. C. (2007). Size-dependent elastic properties of unidirectional nano-composites with interface stresses. Acta Mech. 188: 39–54

    Article  MATH  Google Scholar 

  12. Fang Q. H. and Liu Y. W. (2006). Size-dependent interaction between an edge dislocation and a nanoscale inhomogeneitymwith interface effects. Acta Mater. 54: 4213–4220

    Article  Google Scholar 

  13. Duan H. L., Yi X., Huang Z. P. and Wang J. (2007). A unified scheme for prediction of effective moduli of multiphase composites with interface effects. Part I: Theoretical framework. Mech. Mater. 39: 81–93

    Article  Google Scholar 

  14. Mayes A. M. (2005). Nanocomposites. Softer at the boundary. Nature Mater. 4: 651–652

    Article  Google Scholar 

  15. Weissmuller J. and Cahn J. W. (1997). Mean stresses in microstructures due to interface stresses: A generalization of a capillary equation for solids. Acta Mater. 45: 1899–1906

    Article  Google Scholar 

  16. Zhou L. G. and Huang H. C. (2004). Are surfaces elastically softer or stiffer?. Appl. Phys. Lett. 84: 1940–1942

    Article  Google Scholar 

  17. Huang, G. Y., Yu, S. W.: Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Phys. Stat. Sol. (b) 243, R22–R24 (2006).

    Google Scholar 

  18. Friesen C., Dimitrov N., Cammarata R. C. and Sieradzki K. (2001). Surface stress and electrocapillarity of solid electrodes. Langmuir 17: 805–815

    Article  Google Scholar 

  19. Michalski, P. J., Sai, N., Mele, E. J.: Continuum theory for nanotube piezoelectricity. Phys. Rev. Lett. 95, 116803(1–4) (2005).

  20. Hill R. (1964). Theory of mechanical properties of fiber-strengthened materials: I. Elastic behavior. J. Mech. Phys. Solids 12: 199–212

    Article  MathSciNet  Google Scholar 

  21. Levin V. M. (1967). Thermal expansion coefficients of heterogeneous media. Mekhanika Tverdogo Tela 2: 88–94 (English version: Mechanics of Solids 2, 58)

    Google Scholar 

  22. Benveniste Y. (1993). Exact results in the micromechanics of fibrous piezoelectric composites exhibiting pyroelectricity. Proc. R Soc. Lond. A 441: 59–81

    Article  Google Scholar 

  23. Chen, T., Dvorak, G. J.: Fibrous nanocomposites with interface stress: Hill’s and Levin’s connections for effective modul. Appl. Phys. Lett. 88, 211912(1–3) (2006).

  24. Nye J. F. (1957). Physical properties of crystals: their representation by tensors and matrices. Clarendon Press, Oxford

    MATH  Google Scholar 

  25. Povstenko Y. Z. (1993). Theoretical investigation of phenomena caused by heterogeneous surface tension in solids. J. Mech. Phys. Solids 41: 1499–1514

    Article  MATH  MathSciNet  Google Scholar 

  26. Chen, T., Chiu, M. S., Weng, C. N.: Derivation of the generalized Young–Laplace equation of curved interfaces in nanoscaled solids. J. Appl. Phys. 100, 074308(1–5) (2006).

  27. Milton G. W. (2002). The theory of composites. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  28. Benveniste Y. and Dvorak G. J. (1992). Uniform field and universal relations in piezoelectric composites. J. Mech. Phys. Solids 40: 1295–1312

    Article  MATH  MathSciNet  Google Scholar 

  29. Dvorak G. J. (1990). On uniform fields in heterogeneous media. Proc. R Soc. A 431: 890–110

    MathSciNet  Google Scholar 

  30. He Q. C. (1999). Uniform strain fields and microstructure-independent relations in non-linear elastic fibrous composites. J. Mech. Phys. Solids 47: 1781–1793

    Article  MATH  MathSciNet  Google Scholar 

  31. Chen T., Nan C. W. and Weng G. J. (2003). Exact connections between magnetostriction and effective elastic moduli of fibrous composites and polycrystals. J. Appl. Phys. 94: 491–495

    Article  Google Scholar 

  32. Benveniste Y. and Miloh T. (2001). Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater 33: 309–323

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tungyang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T. Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects. Acta Mech 196, 205–217 (2008). https://doi.org/10.1007/s00707-007-0477-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-007-0477-1

Keywords

Navigation