Skip to main content
Log in

Molecular kinetic theory of boundary slip on textured surfaces by molecular dynamics simulations

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A theoretical model extended from the Frenkel-Eyring molecular kinetic theory (MKT) was applied to describe the boundary slip on textured surfaces. The concept of the equivalent depth of potential well was adopted to characterize the solid-liquid interactions on the textured surfaces. The slip behaviors on both chemically and topographically textured surfaces were investigated using molecular dynamics (MD) simulations. The extended MKT slip model is validated by our MD simulations under various situations, by constructing different complex surfaces and varying the surface wettability as well as the shear stress exerted on the liquid. This slip model can provide more comprehensive understanding of the liquid flow on atomic scale by considering the influence of the solid-liquid interactions and the applied shear stress on the nano-flow. Moreover, the slip velocity shear-rate dependence can be predicted using this slip model, since the nonlinear increase of the slip velocity under high shear stress can be approximated by a hyperbolic sine function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gogte S, Vorobieff P, Truesdell R, et al. Effective slip on textured superhydrophobic surfaces. Phys Fluids, 2005, 17: 051701

    Article  ADS  Google Scholar 

  2. Barthlott W, Neinhuis C. Purity of sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202: 1–8

    Article  Google Scholar 

  3. Frohnapfel B, Jovanović J, Delgado A. Experimental investigations of turbulent drag reduction by surface-embedded grooves. J Fluid Mech, 2007, 590: 107–116

    Article  MATH  ADS  Google Scholar 

  4. Bechert D W, Bruse M, Hage W, et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J Fluid Mech, 1997, 338: 59–87

    Article  ADS  Google Scholar 

  5. Tu Y S, Xiu P, Wan R Z, et al. Water-mediated signal multiplication with y-shaped carbon nanotubes. Proc Natl Acad Sci USA, 2009, 106: 18120–18124

    Article  ADS  Google Scholar 

  6. Xiu P, Zhou B, Qi W P, et al. Manipulating biomolecules with aqueous liquids confined within single-walled nanotubes. J Am Chem Soc, 2009, 131: 2840–2845

    Article  Google Scholar 

  7. Zhao Y P. Physical Mechanics of Surfaces and Interfaces. Beijing: Science Press, 2012

    Google Scholar 

  8. Zhao Y P. Moving contact line problem: Advances and perspectives. Theor Appl Mech Lett, 2014, 4: 034002

    Article  Google Scholar 

  9. Neto C, Evans D R, Bonaccurso E, et al. Boundary slip in newtonian liquids: A review of experimental studies. Rep Prog Phys, 2005, 68: 2859–2897

    Article  ADS  Google Scholar 

  10. Truesdell R, Mammoli A, Vorobieff P, et al. Drag reduction on a patterned superhydrophobic surface. Phys Rev Lett, 2006, 97: 044504

    Article  ADS  Google Scholar 

  11. Mongruel A, Chastel T, Asmolov E S, et al. Effective hydrodynamic boundary conditions for microtextured surfaces. Phys Rev E, 2013, 87: 011002

    Article  ADS  Google Scholar 

  12. Yuan Q Z, Zhao Y P. Multiscale dynamic wetting of a droplet on a lyophilic pillar-arrayed surface. J Fluid Mech, 2013, 716: 171–188

    Article  MATH  ADS  Google Scholar 

  13. Wu C M, Lei S L, Qian T Z, et al. Stick-slip motion of moving contact line on chemically patterned surfaces. Commun Comput Phys, 2010, 7: 403–422

    Google Scholar 

  14. Capozza R, Fasolino A, Ferrario M, et al. Lubricated friction on nanopatterned surfaces via molecular dynamics simulations. Phys Rev B, 2008, 77: 235432

    Article  ADS  Google Scholar 

  15. Priezjev N V, Darhuber A A, Troian S M. Slip behavior in liquid films on surfaces of patterned wettability: Comparison between continuum and molecular dynamics simulations. Phys Rev E, 2005, 71: 041608

    Article  ADS  Google Scholar 

  16. Priezjev N V. Effect of surface roughness on rate-dependent slip in simple fluids. J Chem Phys, 2007, 127: 144708

    Article  ADS  Google Scholar 

  17. Priezjev N V. Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures. J Chem Phys, 2011, 135: 204704

    Article  ADS  Google Scholar 

  18. Tretyakov N, Müller M. Correlation between surface topography and slippage: A molecular dynamics study. Soft Matter, 2013, 9: 3613–3623

    Article  ADS  Google Scholar 

  19. Wang X P, Qian T Z, Sheng P. Moving contact line on chemically patterned surfaces. J Fluid Mech, 2008, 605: 59–78

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Huang D M, Sendner C, Horinek D, et al. Water slippage versus contact angle: A quasiuniversal relationship. Phys Rev Lett, 2008, 101: 226101

    Article  ADS  Google Scholar 

  21. Patankar N A. On the modeling of hydrophobic contact angles on rough surfaces. Langmuir, 2003, 19: 1249–1253

    Article  Google Scholar 

  22. Thompson P A, Troian S M. A general boundary condition for liquid flow at solid surfaces. Nature, 1997, 389: 360–362

    Article  ADS  Google Scholar 

  23. Ma M D, Shen L M, Sheridan J, et al. Friction of water slipping in carbon nanotubes. Phys Rev E, 2011, 83: 036316

    Article  ADS  Google Scholar 

  24. Vinogradova O I. Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir, 1995, 11: 2213–2220

    Article  Google Scholar 

  25. Wei N, Peng X S, Xu Z P. Breakdown of fast water transport in graphene oxides. Phys Rev E, 2014, 89: 012113

    Article  ADS  Google Scholar 

  26. Ho T A, Papavassiliou D V, Lee L L, et al. Liquid water can slip on a hydrophilic surface. Proc Natl Acad Sci USA, 2011, 108: 16170–16175

    Article  ADS  Google Scholar 

  27. Wang F C, Zhao Y P. Slip boundary conditions based on molecular kinetic theory: The critical shear stress and the energy dissipation at the liquid-solid interface. Soft Matter, 2011, 7: 8628–8634

    Article  ADS  Google Scholar 

  28. Philip J R. Flows satisfying mixed no-slip and no-shear conditions. Z Angew Math Phys, 1972, 23: 353–372

    Article  MathSciNet  MATH  Google Scholar 

  29. Philip J R. Integral properties of flows satisfying mixed no-slip and no-shear conditions. Z Angew Math Phys, 1972, 23: 960–968

    Article  MathSciNet  MATH  Google Scholar 

  30. Lauga E, Stone H A. Effective slip in pressure-driven stokes flow. J Fluid Mech, 2003, 489: 55–77

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. Yang F Q. Slip boundary condition for viscous flow over solid surfaces. Chem Eng Comm, 2010, 197: 544–550

    Article  Google Scholar 

  32. Frenkel J I. Kinetic Theory of Liquids. Oxford: Oxford University Press, 1946

    MATH  Google Scholar 

  33. Glasstone S, Laidler K J, Eyring H. The Theory of Rate Processes. New York: McGraw-Hill, 1941

    Google Scholar 

  34. Blake T D, Haynes J M. Kinetics of liquid/liquid displacement. J Colloid Interface Sci, 1969, 30: 421–423

    Article  Google Scholar 

  35. Blake T D. The physics of moving wetting lines. J Colloid Interface Sci, 2006, 299: 1–13

    Article  Google Scholar 

  36. Yuan Q Z, Zhao Y P. Precursor film in dynamic wetting, electrowetting, and electro-elasto-capillarity. Phys Rev Lett, 2010, 104: 246101

    Article  ADS  Google Scholar 

  37. Zhu X Y, Yuan Q Z, Zhao Y P. Capillary wave propagation during the delamination of graphene by the precursor films in electro-elasto- capillarity. Sci Rep, 2012, 2: 927

    Article  ADS  Google Scholar 

  38. Wang F C, Zhao Y P. Contact angle hysteresis at the nanoscale: A molecular dynamics simulation study. Colloid Polym Sci, 2013, 291: 307–315

    Article  Google Scholar 

  39. Yang F Q. Diffusion-induced stress in inhomogeneous materials: concentration-dependent elastic modulus. Sci China-Phys Mech Astron, 2012, 55(6): 955–962

    Article  ADS  Google Scholar 

  40. Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graphics, 1996, 14: 33–38

    Article  Google Scholar 

  41. Berendsen H J C, Grigera J R, Straatsma T P. The missing term in effective pair potentials. J Phys Chem, 1987, 91: 6269–6271

    Article  Google Scholar 

  42. Hockney R W, Eastwood J W. Computer Simulation Using Particles. New York: Adam Hilger, 1988

    Book  MATH  Google Scholar 

  43. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117: 1–19

    Article  MATH  ADS  Google Scholar 

  44. Yeh I C, Berkowitz M L. Ewald summation for systems with slab geometry. J Chem Phys, 1999, 111: 3155–3162

    Article  ADS  Google Scholar 

  45. Martini A, Hsu H Y, Panankar N A, et al. Slip at high shear rates. Phys Rev Lett, 2008, 100: 206001

    Article  ADS  Google Scholar 

  46. McBride S P, Law B M. Viscosity-dependent liquid slip at molecularly smooth hydrophobic surfaces. Phys Rev E, 2009, 80: 060601

    Article  ADS  Google Scholar 

  47. Kannam S K, Todd B D, Hansen J S, et al. Slip length of water on graphene: Limitations of non-equilibrium molecular dynamics simulations. J Chem Phys, 2012, 136: 024705

    Article  ADS  Google Scholar 

  48. Lichter S, Roxin A, Mandre S. Mechanisms for liquid slip at solid surfaces. Phys Rev Lett, 2004, 93: 086001

    Article  ADS  Google Scholar 

  49. Yong X, Zhang L T. Thermostats and thermostat strategies for molecular dynamics simulations of nanofluidics. J Chem Phys, 2013, 138: 084503

    Article  ADS  Google Scholar 

  50. Yong X, Zhang L T. Slip in nanoscale shear flow: Mechanisms of interfacial friction. Microfluid Nanofluid, 2013, 14: 299–308

    Article  Google Scholar 

  51. Yuan Q Z, Zhao Y P. Topology-dominated dynamic wetting of the precursor chain in a hydrophilic interior corner. Proc R Soc A, 2012, 468: 310–322

    Article  ADS  Google Scholar 

  52. Sun Z W, Xu S H. Two examples of using physical mechanics approach to evaluate colloidal stability. Sci China-Phys Mech Astron, 2012, 55(6): 933–939

    Article  ADS  Google Scholar 

  53. Yu Y, Wu Q, Zhang K, et al. Effect of triple-phase contact line on contact angle hysteresis. Sci China-Phys Mech Astron, 2012, 55(6): 1045–1050

    Article  ADS  Google Scholar 

  54. Wang X W, Yu Y. Analysis of the shape of heavy droplets on flat and spherical surface. Sci China-Phys Mech Astron, 2012, 55(6): 1118–1124

    Article  ADS  Google Scholar 

  55. Zhang W L, Qian J, Yao H M, et al. Effects of functionally graded materials on dynamics of molecular bond clusters. Sci China-Phys Mech Astron, 2012, 55(6): 980–988

    Article  ADS  Google Scholar 

  56. Joseph S, Aluru N R. Why are carbon nanotubes fast transporters of water? Nano Lett, 2008, 8: 452–458

    Article  ADS  Google Scholar 

  57. Cottin-Bizonne C, Barentin C, Charlaix E, et al. Dynamics of simple liquids at heterogeneous surfaces: Molecular-dynamics simulations and hydrodynamic description. Eur Phys J E, 2004, 15: 427–438

    Article  Google Scholar 

  58. Wenzel R N. Resistance of solid surfaces to wetting by water. Ind Eng Chem, 1936, 28: 988–994

    Article  Google Scholar 

  59. Cassie A B D, Baxter S. Wettability of porous surfaces. Trans Faraday Soc, 1944, 40: 546–551

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to FengChao Wang or HengAn Wu.

Additional information

Contributed by ZHAO YaPu (Associate Editor)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, F., Yang, F. et al. Molecular kinetic theory of boundary slip on textured surfaces by molecular dynamics simulations. Sci. China Phys. Mech. Astron. 57, 2152–2160 (2014). https://doi.org/10.1007/s11433-014-5586-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5586-y

Keywords

Navigation