Skip to main content
Log in

Dissecting atomic interweaving friction reveals the orbital overlap repulsion and its role in the integrity of woven nanofabrics in composites

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Strong and stable woven formations are a type of promising structure for regulating external forces in hybrid material systems with desired electro/thermomechanical properties. The strength of the knitted composite structures relies on the distribution of stress over a cohesive network of nanoribbons/fabrics, whose integrity is dependent upon an underlying mechanism of stabilization through friction that keeps the nanoribbons/fabrics in their place. Herein, we uncover a new molecular-level friction mechanism in interwoven composite structures, where the extreme pulling speed causes instant orbital overlap, which creates additional resisting interfacial shear strength that delays the collapse of the woven structure. Our theoretical analysis of atomic woven two-dimensional materials (e.g., graphene, MXene, black phosphorus, and layered double hydroxide) conducted through molecular dynamics simulations and density functional theory calculations help break up this force between the atomic interactions and a repulsive force residing within the forced orbital overlap at the edges of the sliding and the confining nanosheets. Our results depict the robustness of the epoxy-weave interface considering the presence of imperfections within the woven formation. The detailed dissection of the friction within the woven formations provides new insight into its crucial role in preserving the post-failure integrity of woven composites. This knowledge will help us understand the physical behavior of knots and weaves as reinforcements at the atomic scale and further realize the potential of nanofabrics for bottom-up ultimate design.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data can be made available on request to the corresponding authors.

References

  1. Tiwari SK et al (2020) Graphene research and their outputs: status and prospect. J Sci Adv Mater Devices 5(1):10–29

    Article  Google Scholar 

  2. Yu W et al (2020) Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv 10(26):15328–15345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cai W et al (2010) Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett 10(5):1645–1651

    Article  CAS  PubMed  Google Scholar 

  4. Wei N et al (2019) Thermal rectification of graphene on substrates with inhomogeneous stiffness. Carbon 154:81–89

    Article  CAS  Google Scholar 

  5. Balandin AA et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  CAS  PubMed  Google Scholar 

  6. Gabris MA et al (2022) Chitosan magnetic graphene grafted polyaniline doped with cobalt oxide for removal of arsenic (V) from water. Environ Res 207:112209

    Article  CAS  PubMed  Google Scholar 

  7. Hosseini E et al (2021) Mechanical hydrolysis imparts self-destruction of water molecules under steric confinement. Phys Chem Chem Phys 23(10):5999–6008

    Article  CAS  PubMed  Google Scholar 

  8. Geim AK, Novoselov KS (2010) The rise of graphene. Nanoscience and technology: a collection of reviews from nature journals. World Scientific, pp 11–19

    Google Scholar 

  9. Yue Y et al (2018) Highly self-healable 3D microsupercapacitor with MXene–graphene composite aerogel. ACS Nano 12(5):4224–4232

    Article  CAS  PubMed  Google Scholar 

  10. Wang C et al (2021) Review of recent progress on graphene-based composite gas sensors. Ceram Int 47(12):16367–16384

    Article  CAS  Google Scholar 

  11. Kim KS et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710

    Article  CAS  PubMed  Google Scholar 

  12. Bunch JS et al (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8(8):2458–2462

    Article  CAS  PubMed  Google Scholar 

  13. Kaynan O et al (2023) Multifunctionality through embedding patterned nanostructures in high-performance composites. Adv Mater 35(32):2300948

    Article  CAS  Google Scholar 

  14. Shi X et al (2021) Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@ BNNS fillers. J Mater Sci Technol 82:239–249

    Article  CAS  Google Scholar 

  15. Cai X et al (2021) Matching micro-and nano-boron nitride hybrid fillers for high-thermal conductive composites. J Appl Polym Sci 138(24):50575

    Article  CAS  Google Scholar 

  16. Hosseini E et al (2018) Mechanical and electromechanical properties of functionalized hexagonal boron nitride nanosheet: a density functional theory study. J Chem Phys 149(11):114701

    Article  PubMed  Google Scholar 

  17. Roudi MRR et al (2022) Review of boron nitride nanosheet-based composites for construction applications. ACS Appl Nano Mate 5(12):17356–17372

    Article  CAS  Google Scholar 

  18. Wei N et al (2012) Knitted graphene-nanoribbon sheet: a mechanically robust structure. Nanoscale 4(3):785–791

    Article  CAS  PubMed  Google Scholar 

  19. Wei N et al (2021) A heat and force locating sensor with nanoscale precision: a knitted graphene sheet. Nanoscale 13(11):5826–5833

    Article  CAS  PubMed  Google Scholar 

  20. Reecht G et al (2015) Pulling and stretching a molecular wire to tune its conductance. J Phys Chem Lett 6(15):2987–2992

    Article  CAS  PubMed  Google Scholar 

  21. Fournier N et al (2011) Force-controlled lifting of molecular wires. Phys Rev B 84(3):035435

    Article  Google Scholar 

  22. Hosseini E et al (2021) Robust cleaning mechanism permanently detaches hydrocarbon species from silicate surfaces by amphiphiles. Appl Surf Sci 558:149954

    Article  CAS  Google Scholar 

  23. Zakertabrizi M et al (2021) Turning two waste streams into one solution for enhancing sustainability of the built environment. Resour Conserv Recycl 174:105778

    Article  CAS  Google Scholar 

  24. Arzt E, Gorb S, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci 100(19):10603–10606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao H, Yao H (2004) Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proc Natl Acad Sci 101(21):7851–7856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yao H et al (2023) Optimal design of multilayer radar absorbing materials: a simulation-optimization approach. Adv Compos Hybrid Mater 6(1):43

    Article  Google Scholar 

  27. Shkir M et al (2022) Density functional theory studies on a novel 1-ethyl-4-phenyl-1,5-benzodiazepin-2-thione molecule and its derivatives for opto-nonlinear applications. Eng Sci 19:319–329

    CAS  Google Scholar 

  28. Qin Z et al (2023) Mechanics of micropattern-guided formation of elastic surface instabilities on the polydimethylsiloxane bilayer. Adv Compos Hybrid Mater 6(5):160

    Article  CAS  Google Scholar 

  29. Ibitoye AI et al (2022) Investigation of photoelectric properties, substrate effects and structural identification of layered rutile titanium oxide with χ3 of borophene using density functional theory. Eng Sci 20:364–376

    CAS  Google Scholar 

  30. Zhiguo M et al (2022) Co-simulation technology of mold flow and structure for injection molding reinforced thermoplastic composite (FRT) parts. Adv Compos Hybrid Mater 5(2):960–972

    Article  Google Scholar 

  31. Jyoti R et al (2022) Density functional theory study of manganese doped armchair graphene nanoribbon for effective carbon dioxide gas sensing. ES Energy Environ 18:47–55

    Google Scholar 

  32. Wu N et al (2022) Dielectric properties and electromagnetic simulation of molybdenum disulfide and ferric oxide-modified Ti3C2TX MXene hetero-structure for potential microwave absorption. Adv Compos Hybrid Mater 5(2):1548–1556

    Article  CAS  Google Scholar 

  33. Rahimian-Koloor SMR, Shokrieh MM (2023) Investigating the effect of the curing-induced residual stress on the mechanical behavior of carbon nanotube/epoxy nanocomposites by molecular dynamics simulation. Eng Sci 22:817

    CAS  Google Scholar 

  34. Sinclair RC, Suter JL, Coveney PV (2018) Graphene–graphene interactions: friction, superlubricity, and exfoliation. Adv Mater 30(13):1705791

    Article  Google Scholar 

  35. Hod O et al (2018) Structural superlubricity and ultralow friction across the length scales. Nature 563(7732):485–492

    Article  CAS  PubMed  Google Scholar 

  36. Dietzel D et al (2017) Limitations of structural superlubricity: chemical bonds versus contact size. ACS Nano 11(8):7642–7647

    Article  CAS  PubMed  Google Scholar 

  37. Gao X et al (2021) Superlubric polycrystalline graphene interfaces. Nat Commun 12(1):5694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng X et al (2016) Robust ultra-low-friction state of graphene via moiré superlattice confinement. Nat Commun 7(1):1–7

    Article  Google Scholar 

  39. Vazirisereshk MR et al (2019) Origin of nanoscale friction contrast between supported graphene, MoS2, and a graphene/MoS2 heterostructure. Nano Lett 19(8):5496–5505

    Article  CAS  PubMed  Google Scholar 

  40. Hosseini E et al (2020) Orbital overlapping through induction bonding overcomes the intrinsic delamination of 3D-printed cementitious binders. ACS Nano 14(8):9466–9477

    Article  CAS  PubMed  Google Scholar 

  41. Cho D-H et al (2013) Effect of surface morphology on friction of graphene on various substrates. Nanoscale 5(7):3063–3069

    Article  CAS  PubMed  Google Scholar 

  42. Berman D et al (2015) Nanoscale friction properties of graphene and graphene oxide. Diam Relat Mater 54:91–96

    Article  CAS  Google Scholar 

  43. Li H et al (2020) Nonmonotonic interfacial friction with normal force in two-dimensional crystals. Phys Rev B 102(8):085427

    Article  CAS  Google Scholar 

  44. Guo Y, Guo W, Chen C (2007) Modifying atomic-scale friction between two graphene sheets: a molecular-force-field study. Phys Rev B 76(15):155429

    Article  Google Scholar 

  45. Song Y et al (2022) Velocity dependence of Moiré friction. Nano Lett 22(23):9529–9536

    Article  CAS  PubMed  Google Scholar 

  46. Hosseini E et al (2019) Graphene oxide in ceramic-based layered structure: nanosheet optimization. Constr Build Mater 224:266–275

    Article  CAS  Google Scholar 

  47. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102(38):7338–7364

    Article  CAS  Google Scholar 

  48. Zhang T et al (2020) Parameterization of a COMPASS force field for single layer blue phosphorene. Nanotechnology 31(14):145702

    Article  CAS  PubMed  Google Scholar 

  49. Chen W-H et al (2017) Mechanical property assessment of black phosphorene nanotube using molecular dynamics simulation. Comput Mater Sci 133:35–44

    Article  Google Scholar 

  50. Chen SJ et al (2017) Reinforcing mechanism of graphene at atomic level: friction, crack surface adhesion and 2D geometry. Carbon 114:557–565

    Article  CAS  Google Scholar 

  51. Arshadi F et al (2021) The effect of D-spacing on the ion selectivity performance of MXene membrane. J Membr Sci 639:119752

    Article  CAS  Google Scholar 

  52. Rappé AK et al (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024–10035

    Article  Google Scholar 

  53. Ding L et al (2018) MXene molecular sieving membranes for highly efficient gas separation. Nat Commun 9(1):1–7

    Article  Google Scholar 

  54. Ding L et al (2020) Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nature Sustainability 3(4):296–302

    Article  Google Scholar 

  55. Abdollahzadeh M et al (2021) Low humid transport of anions in layered double hydroxides membranes using polydopamine coating. J Membr Sci 624:118974

    Article  CAS  Google Scholar 

  56. Heinz H et al (2013) Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. Langmuir 29(6):1754–1765

    Article  CAS  PubMed  Google Scholar 

  57. Lin T-J, Heinz H (2016) Accurate force field parameters and pH resolved surface models for hydroxyapatite to understand structure, mechanics, hydration, and biological interfaces. J Phys Chem C 120(9):4975–4992

    Article  CAS  Google Scholar 

  58. Zhang L, Ji W, Liew K (2018) Mechanical properties of diamond nanothread reinforced polymer composites. Carbon 132:232–240

    Article  CAS  Google Scholar 

  59. Ji W-M, Zhang L-W, Liew K (2021) Understanding interfacial interaction characteristics of carbon nitride reinforced epoxy composites from atomistic insights. Carbon 171:45–54

    Article  CAS  Google Scholar 

  60. Basquiroto de Souza F et al (2021) Controlled growth and ordering of poorly-crystalline calcium-silicate-hydrate nanosheets. Commun Mater 2(1):1–11

    Article  Google Scholar 

  61. Rad AS et al (2015) Lewis acid-base surface interaction of some boron compounds with N-doped graphene; first principles study. Curr Appl Phys 15(10):1271–1277

    Article  Google Scholar 

  62. Abdollahzadeh M et al (2022) Designing Angstrom-scale asymmetric MOF-on-MOF cavities for high monovalent ion selectivity. Adv Mater 34(9):2107878

    Article  CAS  Google Scholar 

  63. Viani L, Curutchet C, Mennucci B (2013) Spatial and electronic correlations in the PE545 light-harvesting complex. J Phys Chem Lett 4(3):372–377

    Article  CAS  PubMed  Google Scholar 

  64. Mennucci B (2013) Modeling environment effects on spectroscopies through QM/classical models. Phys Chem Chem Phys 15(18):6583–6594

    Article  CAS  PubMed  Google Scholar 

  65. Wang X, Lu C, Yang M (2020) The impact of electron correlation on describing QM/MM interactions in the attendant molecular dynamics simulations of CO in myoglobin. Sci Rep 10(1):1–12

    CAS  Google Scholar 

  66. Wang J-N et al (2021) Accelerated computation of free energy profile at ab initio quantum mechanical/molecular mechanics accuracy via a semiempirical reference potential. 4. Adaptive QM/MM. J Chem Theory Comput 17(3):1318–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864

    Article  Google Scholar 

  68. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133

    Article  Google Scholar 

  69. Roothaan CCJ (1951) New Developments in molecular orbital theory. Rev Mod Phys 23(2):69–89

    Article  CAS  Google Scholar 

  70. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  PubMed  Google Scholar 

  71. Aramfard M et al (2022) Aqueous dispersion of carbon nanomaterials with cellulose nanocrystals: an investigation of molecular interactions. Small 18(37):2202216

    Article  CAS  Google Scholar 

  72. Abraham J et al (2017) Tunable sieving of ions using graphene oxide membranes. Nat Nanotechnol 12(6):546–550

    Article  CAS  PubMed  Google Scholar 

  73. Lei Y-J et al (2020) Tailoring MXene-based materials for sodium-ion storage: synthesis, mechanisms, and applications. Electrochem Energy Rev 3(4):766–792

    Article  CAS  Google Scholar 

  74. Tang J et al (2021) Interlayer space engineering of MXenes for electrochemical energy storage applications. Chem Eur J 27(6):1921–1940

    Article  CAS  PubMed  Google Scholar 

  75. Pan D et al (2017) Simulations of twisted bilayer orthorhombic black phosphorus. Phys Rev B 96(4):041411

    Article  Google Scholar 

  76. Shulenburger L et al (2015) The nature of the interlayer interaction in bulk and few-layer phosphorus. Nano Lett 15(12):8170–8175

    Article  CAS  PubMed  Google Scholar 

  77. Liu Y et al (2014) Molecular sieving through interlayer galleries. J Mater Chem 2(5):1235–1238

    Article  CAS  Google Scholar 

  78. Li Z et al (2023) Boron nitride whiskers and nano alumina synergistically enhancing the vertical thermal conductivity of epoxy-cellulose aerogel nanocomposites. Adv Compos Hybrid Mater 6(6):224

    Article  CAS  Google Scholar 

  79. Li X et al (2023) Electrophoretically deposited “rigid-flexible” hybrid graphene oxide-polyethyleneimine on carbon fibers for synergistically reinforced epoxy nanocomposites. Adv Compos Hybrid Mater 6(4):152

    Article  CAS  Google Scholar 

  80. Zhao M et al (2023) Stepwise assembling manganese dioxide nanosheets and metal-organic frameworks on carbon fiber for deriving desirable mechanical properties and flame retardancy of epoxy composites. Adv Compos Hybrid Mater 6(4):150

    Article  CAS  Google Scholar 

  81. Sun Y et al (2022) Effects of stitch yarns on interlaminar shear behavior of three-dimensional stitched carbon fiber epoxy composites at room temperature and high temperature. Adv Compos Hybrid Mater 5(3):1951–1965

    Article  CAS  Google Scholar 

  82. Ye X-Y et al (2023) Sustainable wearable infrared shielding bamboo fiber fabrics loaded with antimony doped tin oxide/silver binary nanoparticles. Adv Compos Hybrid Mater 6(3):106

    Article  CAS  Google Scholar 

  83. Wang W et al (2023) Lead-free and wearing comfort 3D composite fiber-needled fabric for highly efficient X-ray shielding. Adv Compos Hybrid Mater 6(2):76

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation, Civil, Mechanical and Manufacturing Innovation (CMMI), Advanced Manufacturing, under Grants #1930277 and #2134465.

Author information

Authors and Affiliations

Authors

Contributions

Mohammad Zakertabrizi and Ehsan Hossieni devised the idea, simulations, original analysis, and writing—original draft. Hamed Fallahi contributed to the simulations and data curing. Terry Creasy and Kenan Song aided in developing and transforming the original idea into models. Ali Tabei, Kyungjun Lee, and Amir Razmjou contributed to the data analysis and revisions to the manuscript. Dorrin Jarrahbashi and Amir Asadi led the project and supervised the models, analysis, and writing.

Corresponding author

Correspondence to Amir Asadi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 628 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakertabrizi, M., Hosseini, E., Fallahi, H. et al. Dissecting atomic interweaving friction reveals the orbital overlap repulsion and its role in the integrity of woven nanofabrics in composites. Adv Compos Hybrid Mater 7, 86 (2024). https://doi.org/10.1007/s42114-024-00897-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00897-4

Keywords

Navigation