Skip to main content
Log in

Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The problem of nanocomposite materials under far-field antiplane mechanical load and inplane electric load is investigated. Based on the theory of Gurtin–Murdoch surface/interface model, an exact solution is obtained for the inhomogeneity/matrix/equivalent medium model, in terms of which a generalized self-consistent approach is proposed for predicting the effective electroelastic moduli of nanocomposites. A closed-form solution of the effective electroelastic moduli is presented. The numerical results reveal that the effective electroelastic moduli are size dependent when the size of the inhomogeneity is on the order of nanometer. With the increase in the size of the inhomogeneity, the present solution approaches to the classical results obtained in the classical theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo J., Wang X.: On the anti-plane shear of an elliptic nano inhomogeneity. Eur. J. Mech. A/Solids 28, 926–934 (2009)

    Article  MATH  Google Scholar 

  2. Mogilevskaya S.G., Crouch S.L., Stolarski H.K.: Multiple interacting circular nano-inhomogeneities with surface/interface effects. J. Mech. Phys. Solids 56, 2298–2327 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wong E.W., Sheehan P.E., Lieber C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  4. Sharma P., Ganti S., Bhate N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, 535–537 (2003)

    Article  Google Scholar 

  5. He L.H., Li Z.R.: Impact of surface stress on stress concentration. Int. J. Solids. Struct. 43, 6208–6219 (2006)

    Article  MATH  Google Scholar 

  6. Xun F., Hu G.K., Huang Z.P.: Effective in plane moduli of composites with a micropolar matrix and coated fibers. Int. J. Solids. Struct. 41, 247–265 (2004)

    Article  MATH  Google Scholar 

  7. Sharma P., Ganti S.: Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J. Appl. Mech. 71, 663–671 (2004)

    Article  MATH  Google Scholar 

  8. Yang F.Q.: Size-dependent effective modulus of elastic composite materials: Spherical nanocavities at dilute concentrations. J. Appl. Phys. 95, 3516–3520 (2004)

    Article  Google Scholar 

  9. Duan H.L., Wang J., Huang Z.P., Karihaloo B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574–1596 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lim C.W., Li Z.R., He L.H.: Size dependent, non-uniform elastic field inside a nano-scale spherical inclusion due to interface stress. Int. J. Solids. Struct. 43, 5055–5065 (2006)

    Article  MATH  Google Scholar 

  11. Chen T., Dvorak G.J., Yu C.C.: Size-dependent elastic properties of unidirectional nano-composites with interface stresses. Acta Mech. 188, 39–54 (2007)

    Article  MATH  Google Scholar 

  12. Tian L., Rajapakse R.K.N.D.: Finite element modelling of nanoscale inhomogeneities in an elastic matrix. Comput. Mater. Sci. 41, 44–53 (2007)

    Article  Google Scholar 

  13. Chen T.: Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects. Acta Mech. 196, 205–217 (2008)

    Article  MATH  Google Scholar 

  14. Mogilevskaya S.G., Crouch S.L., Stolarski H.K., Benusiglio A.: Equivalent inhomogeneity method for evaluating the effective elastic properties of unidirectional multi-phase composites with surface/interface effects. Int. J. Solids. Struct. 47, 407–418 (2010)

    Article  MATH  Google Scholar 

  15. Mogilevskaya S.G., Crouch S.L., Grotta A.L., Stolarski H.K.: The effects of surface elasticity and surface tension on the transverse overall elastic behavior of unidirectional nano-composites. Compos. Sci. Technol. 70, 427–434 (2010)

    Article  Google Scholar 

  16. Gurtin M.E., Murdoch A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gurtin M.E., Murdoch A.I.: Surface stress in solids. Int. J. Solids. Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  18. Gurtin M.E., Weissmuller J., Larche F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A: Phys. Condens. Matter. Struct. Defects. Mech. Prop. 78, 1093–1109 (1998)

    Google Scholar 

  19. Tiersten H.F.: Linear Piezoelectric Plate Vibrations. Plenum Press, New York (1969)

    Google Scholar 

  20. Chen T., Chiu M.S., Weng C.N.: Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. J. Appl. Phys. 100, 074308 (2006)

    Article  Google Scholar 

  21. Miller R.E., Shenoy V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  22. Muskhelishvili N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen (1953)

    MATH  Google Scholar 

  23. Benveniste Y., Miloh T.: Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater. 33, 309–323 (2001)

    Article  Google Scholar 

  24. Jiang C.P., Cheung Y.K.: An exact solution for the three-phase piezoelectric cylinder model under antiplane shear and its applications to piezoelectric composites. Int. J. Solids. Struct. 38, 4777–4796 (2001)

    Article  MATH  Google Scholar 

  25. Huang G.Y., Yu S.W.: Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Phys. Stat. Sol. (b) 243, R22–R24 (2006)

    Article  Google Scholar 

  26. Friesen C., Dimitrov N., Cammarata R.C., Sieradzki K.: Surface stress and electrocapillarity of solid electrodes. Langmuir 17, 807–815 (2001)

    Article  Google Scholar 

  27. Michalski P.J., Sai N., Mele E.J.: Continuum theory for nanotube piezoelectricity. Phys. Rev. Lett. 95, 116803 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. C. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, J.H., Xu, Y.L. & Zhang, F.C. Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect. Acta Mech 222, 59 (2011). https://doi.org/10.1007/s00707-011-0523-x

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-011-0523-x

Keywords

Navigation