Skip to main content

Advertisement

Log in

Venous Thromboembolism: Review of Clinical Challenges, Biology, Assessment, Treatment, and Modeling

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Venous thromboembolism (VTE) is a massive clinical challenge, annually affecting millions of patients globally. VTE is a particularly consequential pathology, as incidence is correlated with extremely common risk factors, and a large cohort of patients experience recurrent VTE after initial intervention. Altered hemodynamics, hypercoagulability, and damaged vascular tissue cause deep-vein thrombosis and pulmonary embolism, the two permutations of VTE. Venous valves have been identified as likely locations for initial blood clot formation, but the exact pathway by which thrombosis occurs in this environment is not entirely clear. Several risk factors are known to increase the likelihood of VTE, particularly those that increase inflammation and coagulability, increase venous resistance, and damage the endothelial lining. While these risk factors are useful as predictive tools, VTE diagnosis prior to presentation of outward symptoms is difficult, chiefly due to challenges in successfully imaging deep-vein thrombi. Clinically, VTE can be managed by anticoagulants or mechanical intervention. Recently, direct oral anticoagulants and catheter-directed thrombolysis have emerged as leading tools in resolution of venous thrombosis. While a satisfactory VTE model has yet to be developed, recent strides have been made in advancing in silico models of venous hemodynamics, hemorheology, fluid–structure interaction, and clot growth. These models are often guided by imaging-informed boundary conditions or inspired by benchtop animal models. These gaps in knowledge are critical targets to address necessary improvements in prediction and diagnosis, clinical management, and VTE experimental and computational models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar, D. R., E. R. Hanlin, I. Glurich, J. J. Mazza, and S. H. Yale. Virchow’s contribution to the understanding of thrombosis and cellular biology. Clin. Med. Res. 8:168–172, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dickson, B. C. Venous thrombosis: on the history of Virchow’s triad. Univ. Toronto Med. J. 81:166–171, 2004.

    Google Scholar 

  3. Wolberg, A. S., M. M. Aleman, K. Leiderman, and K. R. Machlus. Procoagulant activity in hemostasis and thrombosis: Virchow’s triad revisited. Anesth. Analg. 114:275–285, 2012.

    Article  PubMed  CAS  Google Scholar 

  4. Wolberg, A. S., et al. Venous thrombosis. Nat. Rev. Dis. Prim. 1:1–17, 2015.

    Google Scholar 

  5. Nicolaides, A. N., V. V. Kakkar, E. S. Field, and P. Fish. Venous stasis and deep-vein thrombosis. Br. J. Surg. 59:713–717, 1972.

    Article  PubMed  CAS  Google Scholar 

  6. Kearon, C. Natural history of venous thromboembolism. Circulation. 107:l–22, 2003.

    Article  Google Scholar 

  7. Alpert, J. S., and J. E. Dalen. Epidemiology and natural history of venous thromboembolism. Prog. Cardiovasc. Dis. 36:417–422, 1994.

    Article  PubMed  CAS  Google Scholar 

  8. Cushman, M. Epidemiology and risk factors for venous thrombosis. Semin. Hematol. 44:62–69, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Heit, J. A. Venous thromboembolism: disease burden, outcomes and risk factors. J. Thromb. Haemost. 3:1611–1617, 2005.

    Article  PubMed  CAS  Google Scholar 

  10. Heit, J. A. Epidemiology of venous thromboembolism. Nat. Rev. Cardiol. 12:464–474, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Silverstein, M. D., J. A. Heit, D. N. Mohr, T. M. Petterson, and W. M. Ofallon. Trends in the incidence of deep vein thrombosis and pulmonary embolism. JAMA Intern. Med. 158:585–593, 1998.

    Article  CAS  Google Scholar 

  12. White, R. H. The epidemiology of venous thromboembolism. Circulation. 107:4–8, 2003.

    Article  Google Scholar 

  13. Heit, J. A., et al. Predictors of recurrence after deep vein thrombosis and pulmonary embolism: a population-based cohort study. Arch. Intern. Med. 160:761–768, 2002.

    Article  Google Scholar 

  14. Heit, J. A., et al. Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study. Arch. Intern. Med. 160:809–815, 2000.

    Article  PubMed  CAS  Google Scholar 

  15. McNeil, K., and J. Dunning. Chronic thromboembolic pulmonary hypertension (CTEPH). Heart. 93:1152–1158, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wilkens, H., et al. Chronic thromboembolic pulmonary hypertension (CTEPH): updated recommendations from the cologne consensus conference 2018. Int. J. Cardiol. 272S:69–78, 2018.

    Article  PubMed  Google Scholar 

  17. Kahn, S. R. The post-thrombotic syndrome. Hematology (United States). 2016:413–418, 2016.

    Article  Google Scholar 

  18. Anderson, F. A., and F. A. Spencer. Risk factors for venous thromboembolism. Circulation. 107:l–9, 2003.

    Article  Google Scholar 

  19. Rosendaal, F. R. Venous thrombosis: a multicausal disease. Lancet. 353:1167–1173, 1999.

    Article  PubMed  CAS  Google Scholar 

  20. Rosendaal, F. R. Venous thrombosis: prevalence and interaction of risk factors. Haemostasis. 29:1–9, 1999.

    PubMed  CAS  Google Scholar 

  21. Goldhaber, S. Z. Risk factors for venous thromboembolism. J. Am. Coll. Cardiol. 56:1–7, 2010.

    Article  PubMed  Google Scholar 

  22. Souto, J. C., et al. Genetic susceptibility to thrombosis and its relationship to physiological risk factors: the GAIT study. Am. J. Hum. Genet. 67:1452–1459, 2000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Secomb, T. W. Blood flow in the microcirculation. Annu. Rev. Fluid Mech. 49:443–461, 2017.

    Article  MathSciNet  Google Scholar 

  24. Kaibara, M. Rheological study on coagulation of blood with special reference to the triggering mechanism of venous thrombus formation. J. Biorheol. 23:2–10, 2009.

    Article  Google Scholar 

  25. Malone, P. C., and P. S. Agutter. To what extent might deep venous thrombosis and chronic venous insufficiency share a common etiology? Int. Angiol. 28:254–268, 2009.

    PubMed  Google Scholar 

  26. Aleman, M. M., B. L. Walton, J. R. Byrnes, and A. S. Wolberg. Fibrinogen and red blood cells in venous thrombosis. Thromb. Res. 133:S38–S40, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Monroe, D. M., and M. Hoffman. What does it take to make the perfect clot? Arter. Thromb. Vasc. Biol. 26:41–48, 2006.

    Article  CAS  Google Scholar 

  28. Sims, P. J., E. M. Faioni, T. Wiedmer, and S. J. Shattil. Complement proteins C5b–9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J. Biol. Chem. 263:18205–18212, 1988.

    Article  PubMed  CAS  Google Scholar 

  29. Gilbert, G. E., et al. Platelet-derived microparticles express high affinity receptors for factor VIII. J. Biol. Chem. 266:17261–17268, 1991.

    Article  PubMed  CAS  Google Scholar 

  30. Hickey, M. J., S. A. Williams, and G. J. Roth. Human platelet glycoprotein IX: an adhesive prototype of leucine-rich glycoproteins with flank-center-flank structures. Proc. Natl. Acad. Sci. USA. 86:6773–6777, 1989.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Bennett, J. S., G. Vilaire, and D. B. Cines. Identification of the fibrinogen receptor on human platelets by photoaffinity labeling. J. Biol. Chem. 257:8049–8054, 1982.

    Article  PubMed  CAS  Google Scholar 

  32. Müller, F., et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell. 139:1143–1156, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Morrell, C. N., A. A. Aggrey, L. M. Chapman, and K. L. Modjeski. Emerging roles for platelets as immune and inflammatory cells. Blood. 123:2759–2767, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Reitsma, P. H., H. H. Versteeg, and S. Middeldorp. Mechanistic view of risk factors for venous thromboembolism. Arter. Thromb Vasc Biol. 32:563–568, 2012.

    Article  CAS  Google Scholar 

  35. von Brühl, M. L., et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 209:819–835, 2012.

    Article  Google Scholar 

  36. Brill, A., et al. Von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood. 117:1400–1407, 2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Furie, B., and B. C. Furie. Mechanisms of thrombus formation. Mechanisms of disease. N. Engl. J. Med. 359:938–949, 2008.

    Article  PubMed  CAS  Google Scholar 

  38. Golebiewska, E. M., and A. W. Poole. Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev. 29:153–162, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Mackman, N., R. E. Tilley, and N. S. Key. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arter. Thromb. Vasc. Biol. 27:1687–1693, 2007.

    Article  CAS  Google Scholar 

  40. Jesty, J., and E. Beltrami. Positive feedbacks of coagulation: their role in threshold regulation. Arter. Thromb. Vasc. Biol. 25:2463–2469, 2005.

    Article  CAS  Google Scholar 

  41. Naito, K., and K. Fujikawa. Activation of human blood coagulation factor XI independent of factor XII. Factor XI is activated by thrombin and factor XIa in the presence of negatively charged surfaces. J. Biol. Chem. 266:7353–7358, 1991.

    Article  PubMed  CAS  Google Scholar 

  42. Vassalli, J. D., A. P. Sappino, and D. Belin. The plasminogen activator/plasmin system. J. Clin. Invest. 88:1067–1072, 1991.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Dichek, D., and T. Quertermous. Thrombin regulation of mRNA levels of tissue plasminogen activator and plasminogen activator inhibitor-1 in cultured human umbilical vein endothelial cells. Blood. 74:222–228, 1989.

    Article  PubMed  CAS  Google Scholar 

  44. Gelehrter, T. D., and R. Sznycer-Laszuk. Thrombin induction of plasminogen activator-inhibitor in cultured human endothelial cells. J. Clin. Invest. 77:165–169, 1986.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Davie, E. W., K. Fujikawa, and W. Kisiel. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry. 30:10363–10370, 1991.

    Article  PubMed  CAS  Google Scholar 

  46. Palareti, G., B. Cosmi, and C. Legnani. D-dimer testing to determine the duration of anticoagulation therapy. N. Engl. J. Med. 355:1780–1789, 2006.

    Article  PubMed  CAS  Google Scholar 

  47. Riley, R. S., A. R. Gilbert, J. B. Dalton, S. Pai, and R. A. McPherson. Widely used types and clinical applications of D-dimer assay. Lab. Med. 47:90–102, 2016.

    Article  PubMed  Google Scholar 

  48. Vaughan, D. E., R. Rai, S. S. Khan, M. Eren, and A. K. Ghosh. Plasminogen activator inhibitor-1 is a marker and a mediator of senescence. Arter. Thromb Vasc Biol. 37:1446–1452, 2017.

    Article  CAS  Google Scholar 

  49. Aird, W. C. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ. Res. 100:174–190, 2007.

    Article  PubMed  CAS  Google Scholar 

  50. Welsh, J. D., et al. Hemodynamic regulation of perivalvular endothelial gene expression prevents deep venous thrombosis. J. Clin. Invest. 129:5489–5500, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gross, P. L., and W. C. Aird. The endothelium and thrombosis. Semin. Thromb. Hemost. 26:463–478, 2000.

    Article  PubMed  CAS  Google Scholar 

  52. Diaz, J. A., et al. Choosing a mouse model of venous thrombosis. Arter. Thromb. Vasc. Biol. 39:311–318, 2019.

    Article  CAS  Google Scholar 

  53. Saha, P., M. E. Andia, and B. Modarai. Magnetic resonance T1 relaxation time of venous thrombus is determined by iron processing and predicts susceptibility to lysis. Circulation. 128:729–736, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ripplinger, C. M., C. W. Kessinger, and C. Li. Inflammation modulates murine venous thrombosis resolution in vivo: assessment by multimodal fluorescence molecular imaging. Arter. Thromb. Vasc. Biol. 32:2616–2624, 2012.

    Article  CAS  Google Scholar 

  55. Wakefield, T. W., D. D. Myers, and P. K. Henke. Mechanisms of venous thrombosis and resolution. Arter. Thromb. Vasc. Biol. 28:387–391, 2008.

    Article  CAS  Google Scholar 

  56. Deatrick, K. B., et al. The effect of matrix metalloproteinase 2 and matrix metalloproteinase 2/9 deletion in experimental post-thrombotic vein wall remodeling. J. Vasc. Surg. 58:1375–1384, 2013.

    Article  PubMed  Google Scholar 

  57. Deatrick, K. B., et al. Matrix metalloproteinase-9 deletion is associated with decreased mid-term vein wall fibrosis in experimental stasis DVT. Thromb. Res. 132:360–366, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Saha, P., et al. Leukocytes and the natural history of deep vein thrombosis: current concepts and future directions. Arter. Thromb. Vasc. Biol. 31:506–512, 2011.

    Article  CAS  Google Scholar 

  59. Stewart, G. J. Neutrophils and deep venous thrombosis. Haemostasis. 23:127–140, 1993.

    PubMed  Google Scholar 

  60. Varma, M. R., et al. Neutropenia impairs venous thrombosis resolution in the rat. J. Vasc. Surg. 38:1090–1098, 2003.

    Article  PubMed  Google Scholar 

  61. Fuchs, T. A., et al. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. 107:15880–15885, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Kimball, A. S., A. T. Obi, J. A. Diaz, and P. K. Henke. The emerging role of NETs in venous thrombosis and immunothrombosis. Front. Immunol. 7:236, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Moaveni, D. K., E. M. Lynch, and C. Luke. Vein wall re-endothelialization after deep vein thrombosis is improved with low-molecular-weight heparin. J. Vasc. Surg. 47:616–624, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Metz, A. K., C. E. Luke, A. Dowling, and P. K. Henke. Acute experimental venous thrombosis impairs venous relaxation but not contraction. J. Vasc. Surg. 71:1006-1012.e1, 2020.

    Article  PubMed  Google Scholar 

  65. Stenberg, B., A. Bylock, and B. Risberg. Effect of venous stasis on vessel wall fibrinolysis. Thromb. Haemost. 51:240–242, 1984.

    Article  PubMed  CAS  Google Scholar 

  66. Kahn, S. R., et al. The postthrombotic syndrome: evidence-based prevention, diagnosis, and treatment strategies: a scientific statement from the American heart association. Circulation. 130:1636–1661, 2014.

    Article  PubMed  Google Scholar 

  67. Andraska, E. A., et al. Pre-clinical model to study recurrent venous thrombosis in the inferior vena cava. Thromb. Haemost. 118:1048–1057, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hara, T., et al. 18F-fluorodeoxyglucose positron emission tomography/computed tomography enables the detection of recurrent same-site deep vein thrombosis by illuminating recently formed, neutrophil-rich thrombus. Circulation. 130:1044–1052, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sevitt, S. The structure and growth of valve-pocket thrombi in femoral veins. J. Clin. Pathol. 27:517–528, 1974.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Van Langevelde, K., A. Šrámek, and F. R. Rosendaal. The effect of aging on venous valves. Arter. Thromb. Vasc. Biol. 30:2075–2080, 2010.

    Article  Google Scholar 

  71. Lehmann, M., R. M. Schoeman, and P. J. Krohl. Platelets drive thrombus propagation in a hematocrit and glycoprotein VI-dependent manner in an in vitro venous thrombosis model. Arter. Thromb. Vasc. Biol. 38:1052–1062, 2018.

    Article  CAS  Google Scholar 

  72. Kearon, C., et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest. 149:315–352, 2016.

    Article  PubMed  Google Scholar 

  73. Konstantinides, S. V., et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European respiratory society (ERS). Eur. Heart J. 41:543–603, 2020.

    Article  PubMed  Google Scholar 

  74. Hirsh, J. Heparin therapy in venous thromboembolism. Ann. N. Y. Acad. Sci. 556:378–385, 1989.

    Article  PubMed  CAS  Google Scholar 

  75. Wells, P. S., M. A. Forgie, and M. A. Rodger. Treatment of venous thromboembolism. JAMA. 311:717–728, 2014.

    Article  PubMed  CAS  Google Scholar 

  76. Hirsh, J. Heparin. N. Engl. J. Med. 324:1565–1574, 1991.

    Article  PubMed  CAS  Google Scholar 

  77. Weitz, J. I. Low-molecular-weight heparins. N. Engl. J. Med. 337:688–698, 1997.

    Article  PubMed  CAS  Google Scholar 

  78. Hirsh, J., et al. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest. 119:64S-94S, 2001.

    Article  PubMed  CAS  Google Scholar 

  79. Walenga, J. M., W. P. Jeske, and J. Fareed. Short- and long-acting synthetic pentasaccharides as antithrombotic agents. Expert Opin. Investig. Drugs. 14:847–858, 2005.

    Article  PubMed  CAS  Google Scholar 

  80. Almarshad, F., A. Alaklabi, E. Bakhsh, A. Pathan, and M. Almegren. Use of direct oral anticoagulants in daily practice. Am. J. Blood Res. 8:57–72, 2018.

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Smith, J., H. Humphrey, and S. V. Rao. Thrombus Pharmacotherapy. Cardiovascular Thrombus: From Pathology and Clinical Presentations to Imaging, Pharmacotherapy and Interventions. (Elsevier, New York). 2018. https://doi.org/10.1016/B978-0-12-812615-8.00042-9.

    Article  PubMed Central  Google Scholar 

  82. Nichols, K. M., S. Henkin, and M. A. Creager. Venous thromboembolism associated with pregnancy: JACC focus seminar. J. Am. Coll. Cardiol. 76:2128–2141, 2020.

    Article  PubMed  Google Scholar 

  83. Nutescu, E. A., S. A. Spinler, A. Wittkowsky, and W. E. Dager. Low-molecular-weight heparins in renal impairment and obesity: available evidence and clinical practice recommendations across medical and surgical settings. Ann. Pharmacother. 43:1064–1083, 2009.

    Article  PubMed  CAS  Google Scholar 

  84. Selleng, K., T. E. Warkentin, and A. Greinacher. Heparin-induced thrombocytopenia in intensive care patients. Crit. Care Med. 35:1165–1176, 2007.

    Article  PubMed  CAS  Google Scholar 

  85. Warkentin, T. E., and G. K. John. Temporal aspects of heparin-induced thrombocytopenia. N. Engl. J. Med. 344:1286–1292, 2001.

    Article  PubMed  CAS  Google Scholar 

  86. Martel, N., J. Lee, and P. S. Wells. Risk for heparin-induced thrombocytopenia with unfractionated and low-molecular-weight heparin thromboprophylaxis: a meta-analysis. Blood. 106:2710–2715, 2005.

    Article  PubMed  CAS  Google Scholar 

  87. Prandoni, P., M. Frulla, D. Sartor, A. Concolato, and A. Girolami. Venous abnormalities and the post-thrombotic syndrome [9]. J. Thromb. Haemost. 3:401–402, 2005.

    Article  PubMed  CAS  Google Scholar 

  88. Harel, Z., M. M. Sood, and J. Perl. Comparison of novel oral anticoagulants versus vitamin K antagonists in patients with chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 24:183–192, 2015.

    Article  PubMed  CAS  Google Scholar 

  89. Van Es, N., M. Coppens, S. Schulman, S. Middeldorp, and H. R. Büller. Direct oral anticoagulants compared with vitamin K antagonists for acute venous thromboembolism: evidence from phase 3 trials. Blood. 124:1968–1975, 2014.

    Article  PubMed  Google Scholar 

  90. Weitz, J. I., et al. Rivaroxaban or aspirin for extended treatment of venous thromboembolism. N. Engl. J. Med. 376:1211–1222, 2017.

    Article  PubMed  CAS  Google Scholar 

  91. Schulman, S., et al. Extended use of dabigatran, warfarin, or placebo in venous thromboembolism. N. Engl. J. Med. 368:709–718, 2013.

    Article  PubMed  CAS  Google Scholar 

  92. Chen, A., E. Stecker, and B. A. Warden. Direct oral anticoagulant use: a practical guide to common clinical challenges. J. Am. Heart Assoc. 9:e017559, 2020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Fasinu, P. S., and S. A. Kustos. Anticoagulants. In: Encyclopedia of Molecular Pharmacology, Springer, New York, 2021, pp. 1–10. https://doi.org/10.1007/978-3-030-21573-6_166-1.

  94. Downie, S. P., et al. Effects of elastic compression stockings on wall shear stress in deep and superficial veins of the calf. Am. J. Physiol. Heart. Circ. Physiol. 294:H2112–H2120, 2008.

    Article  PubMed  CAS  Google Scholar 

  95. Hartman, J. T., et al. Cyclic sequential compression of the lower limb in prevention of deep venous thrombosis. J. Bone Jt. Surg. Ser. A. 64:1059–1062, 1982.

    Article  CAS  Google Scholar 

  96. Wall, J., et al. A pilot study of venous flow augmentation using a novel mechanical graded intermittent sequential compression device for venous insufficiency. J. Vasc. Surg. Venous Lymphat. Disord. 7:217–221, 2019.

    Article  PubMed  Google Scholar 

  97. Sigel, B. Type of compression for reducing venous stasis. Arch. Surg. 110:171, 1975.

    Article  PubMed  CAS  Google Scholar 

  98. Keith, S. L., et al. Do graduated compression stockings and pneumatic boots have an additive effect on the peak velocity of venous blood flow? Arch. Surg. 127:727–730, 1992.

    Article  PubMed  CAS  Google Scholar 

  99. Mayberry, J. C., G. L. Moneta, R. D. De Frang, and J. M. Porter. The influence of elastic compression stockings on deep venous hemodynamics. J. Vasc. Surg. 13:91–100, 1991.

    Article  PubMed  CAS  Google Scholar 

  100. Shalhoub, J., et al. Graduated compression stockings as adjuvant to pharmaco-thromboprophylaxis in elective surgical patients (GAPS study): randomised controlled trial. BMJ.369:m1309, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Uddin, K. M., R. Mclean, H. Bolooki, and J. R. Jude. Caval interruption for prevention of pulmonary embolism: long-term results of a new method. Arch. Surg. 99:711–715, 1969.

    Article  Google Scholar 

  102. Kaufman, J. A., et al. Guidelines for the use of retrievable and convertible vena cava filters: report from the Society of Interventional Radiology multidisciplinary consensus conference. J. Vasc. Interv. Radiol. 17:449–459, 2006.

    Article  PubMed  Google Scholar 

  103. Duffett, L., and M. Carrier. Inferior vena cava filters. J. Thromb. Haemost. 15:3–12, 2017.

    Article  PubMed  CAS  Google Scholar 

  104. Grewal, S., M. R. Chamarthy, and S. P. Kalva. Complications of inferior vena cava filters. Cardiovasc. Diagn. Ther. 6:632–641, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Jia, Z., et al. Utility of retrievable inferior vena cava filters: a systematic literature review and analysis of the reasons for nonretrieval of filters with temporary indications. Cardiovasc. Interv. Radiol. 41:675–682, 2018.

    Google Scholar 

  106. Caplin, D. M., et al. Quality improvement guidelines for the performance of inferior vena cava filter placement for the prevention of pulmonary embolism. J. Vasc. Interv. Radiol. 22:1499–1506, 2011.

    PubMed  Google Scholar 

  107. Stein, P. D., F. Matta, F. R. Lawrence, and M. J. Hughes. Usefulness of inferior vena cava filters in unstable patients with acute pulmonary embolism and patients who underwent pulmonary embolectomy. Am. J. Cardiol. 121:495–500, 2018.

    Article  PubMed  Google Scholar 

  108. Secemsky, E. A., B. J. Carroll, and R. W. Yeh. Inferior vena cava filters and mortality. JAMA Netw. Open.1:e180453, 2018.

    Article  PubMed  Google Scholar 

  109. Decousus, H., et al. A clinical trial of vena caval filters in the prevention of pulmonary embolism in patients with proximal deep-vein thrombosis. N. Engl. J. Med. 338:409–416, 1998.

    Article  PubMed  CAS  Google Scholar 

  110. Decousus, H. Eight-year follow-up of patients with permanent vena cava filters in the prevention of pulmonary embolism: the PREPIC (Prévention du Risque d’Embolie Pulmonaire par Interruption Cave) randomized study. Circulation. 112:416–422, 2005.

    Article  Google Scholar 

  111. Mismetti, P., et al. Effect of a retrievable inferior vena cava filter plus anticoagulation vs anticoagulation alone on risk of recurrent pulmonary embolism: a randomized clinical trial. JAMA. 313:1627–1635, 2015.

    Article  PubMed  Google Scholar 

  112. Deyoung, E., and J. Minocha. Inferior vena cava filters: guidelines, best practice, and expanding indications. Semin. Intervent. Radiol. 33:65–70, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ortel, T. L., et al. American society of hematology 2020 guidelines for management of venous thromboembolism: treatment of deep vein thrombosis and pulmonary embolism. Blood Adv. 4:4693–4738, 2020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Hull, R. D., V. J. Marder, A. F. Mah, R. K. Biel, and R. F. Brant. Quantitative assessment of thrombus burden predicts the outcome of treatment for venous thrombosis: a systematic review. Am. J. Med. 118:456–464, 2005.

    Article  PubMed  Google Scholar 

  115. Konstantinides, S. V., et al. Impact of thrombolytic therapy on the long-term outcome of intermediate-risk pulmonary embolism. J. Am. Coll. Cardiol. 69:1536–1544, 2017.

    Article  PubMed  CAS  Google Scholar 

  116. Watson, L., C. Broderick, and M. P. Armon. Thrombolysis for acute deep vein thrombosis. Cochrane Database Syst. Rev. 2016:11, 2016.

    Google Scholar 

  117. Enden, T., et al. Catheter-directed thrombolysis vs. anticoagulant therapy alone in deep vein thrombosis: results of an open randomized, controlled trial reporting on short-term patency. J. Thromb. Haemost. 7:1268–1275, 2009.

    Article  PubMed  CAS  Google Scholar 

  118. Enden, T., et al. Long-term outcome after additional catheter-directed thrombolysis versus standard treatment for acute iliofemoral deep vein thrombosis (the CaVenT study): a randomised controlled trial. Lancet. 379:31–38, 2012.

    Article  PubMed  Google Scholar 

  119. Bashir, R., C. J. Zack, H. Zhao, A. J. Comerota, and A. A. Bove. Comparative outcomes of catheter-directed thrombolysis plus anticoagulation vs anticoagulation alone to treat lower-extremity proximal deep vein thrombosis. JAMA Intern. Med. 174:1494–1501, 2014.

    Article  PubMed  Google Scholar 

  120. Meyer, G., et al. Fibrinolysis for patients with intermediate-risk pulmonary embolism. N. Engl. J. Med. 370:1402–1411, 2014.

    Article  PubMed  CAS  Google Scholar 

  121. Vedantham, S., et al. Pharmacomechanical catheter-directed thrombolysis for deep-vein thrombosis. N. Engl. J. Med. 377:2240–2252, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Arko, F. R., et al. Aggressive percutaneous mechanical thrombectomy of deep venous thrombosis: early clinical results. Arch. Surg. 142:513–518, 2007.

    Article  PubMed  Google Scholar 

  123. Karthikesalingam, A., et al. A systematic review of percutaneous mechanical thrombectomy in the treatment of deep venous thrombosis. Eur. J. Vasc. Endovasc. Surg. 41:554–565, 2011.

    Article  PubMed  CAS  Google Scholar 

  124. Zervides, C., and A. D. Giannoukas. Computational phlebology: reviewing computer models of the venous system. Phlebology. 28:209–218, 2013.

    Article  PubMed  CAS  Google Scholar 

  125. Gottlob, R., and R. May. Anatomy of venous valves. Venous Valves. 1986. https://doi.org/10.1007/978-3-7091-8827-9_4.

    Article  Google Scholar 

  126. Meissner, M. H., et al. The hemodynamics and diagnosis of venous disease. J. Vasc. Surg. 46:S4–S24, 2007.

    Article  Google Scholar 

  127. Maggisano, R., and A. W. Harrison. The venous system. In: The Workplace Safety and Insurance Appeals Tribunal, 2004.

  128. Abkarian, M., and A. Viallat. Chapter 10: on the importance of the deformability of red blood cells in blood flow. RSC Soft Matter. 2016:347–362, 2016.

    Google Scholar 

  129. Robertson, A. M., A. Sequeira, and R. G. Owens. Rheological models for blood. Model Simul. Appl. 1:211–241, 2009.

    MathSciNet  Google Scholar 

  130. Sequeira, A. Hemorheology: non-newtonian constitutive models for blood flow simulations. In: Lecture Notes in Mathematics, Vol. 2212, Berlin: Springer, 2018, pp. 1–44.

    Google Scholar 

  131. Puig-de-Morales-Marinkovic, M., K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh. Viscoelasticity of the human red blood cell. Am. J. Physiol. 293:597–605, 2007.

    Article  Google Scholar 

  132. Matteoli, P., F. Nicoud, and S. Mendez. Impact of the membrane viscosity on the tank-treading behavior of red blood cells. Phys. Rev. Fluids. 6:043602, 2021.

    Article  Google Scholar 

  133. Chien, S. Shear dependence of effective cell volume as a determinant of blood viscosity. Science (80-). 168:977–979, 1970.

    Article  CAS  Google Scholar 

  134. Fischer, T. M., M. Stöhr-Liesen, and H. Schmid-Schönbein. The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow. Science (80-). 202:894–896, 1978.

    Article  CAS  Google Scholar 

  135. Lanotte, L., et al. Red cells’ dynamic morphologies govern blood shear thinning under microcirculatory flow conditions. Proc. Natl. Acad. Sci. USA. 113:13289–13294, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Mauer, J., et al. Flow-induced transitions of red blood cell shapes under shear. Phys. Rev. Lett. 121:1–6, 2018.

    Article  Google Scholar 

  137. Beris, A. N., J. S. Horner, S. Jariwala, M. J. Armstrong, and N. J. Wagner. Recent advances in blood rheology: a review. Soft Matter. 17:10591–10613, 2021.

    Article  PubMed  CAS  Google Scholar 

  138. Li, X., H. Lu, and Z. Peng. Continuum- and particle-based modeling of human red blood cells. In: Handbook of Materials Modeling, Berlin: Springer, 2018, pp. 1–17.

    Google Scholar 

  139. Fedosov, D. A., H. Noguchi, and G. Gompper. Multiscale modeling of blood flow: from single cells to blood rheology. Biomech. Model. Mechanobiol. 13:239–258, 2014.

    Article  PubMed  Google Scholar 

  140. van Batenburg-Sherwood, J., and S. Balabani. Continuum microhaemodynamics modelling using inverse rheology. Biomech. Model. Mechanobiol. 21:335–361, 2022.

    Article  PubMed  Google Scholar 

  141. Ostwald, W. Ueber die rechnerische Darstellung des Strukturgebietes der Viskosität. Kolloid-Zeitschrift. 47:176–187, 1929.

    Article  CAS  Google Scholar 

  142. Apostolidis, A. J., and A. N. Beris. Modeling of the blood rheology in steady-state shear flows. J. Rheol. (NY). 58:607–633, 2014.

    Article  CAS  Google Scholar 

  143. Bossers, S. S. M., et al. Computational fluid dynamics in fontan patients to evaluate power loss during simulated exercise. Heart. 100:696–701, 2014.

    Article  PubMed  Google Scholar 

  144. Aycock, K. I., R. L. Campbell, F. C. Lynch, K. B. Manning, and B. A. Craven. The Importance of Hemorheology and Patient Anatomy on the Hemodynamics in the Inferior Vena Cava. Annals of Biomedical Engineering, Vol. 44, Berlin: Springer, 2016.

    Google Scholar 

  145. Ballyk, P. D., D. A. Steinman, and C. R. Ethier. Simulation of non-newtonial blood flow in an end-to-side anastomosis. Biorheology. 31:565–586, 1994.

    Article  PubMed  CAS  Google Scholar 

  146. Fortuny, G., et al. Effect of anticoagulant treatment in deep vein thrombosis: a patient-specific computational fluid dynamics study. J. Biomech. 48:2047–2053, 2015.

    Article  PubMed  Google Scholar 

  147. Galdi, G. Hemodynamical flows: modeling, analysis and simulation. https://b-ok.org/book/673069/c9cfda.

  148. Quemada, D., and R. Droz. Blood viscoelasticity and thixotropy from stress formation and relaxation measurements: a unified model. Biorheology. 20:635–651, 1983.

    Article  PubMed  CAS  Google Scholar 

  149. Thurston, G. B. Rheological parameters for the viscosity viscoelasticity and thixotropy of blood. Biorheology. 16:149–162, 1979.

    Article  PubMed  CAS  Google Scholar 

  150. Anand, M., J. Kwack, and A. Masud. A new generalized Oldroyd-B model for blood flow in complex geometries. Int. J. Eng. Sci. 72:78–88, 2013.

    Article  Google Scholar 

  151. Thurston, G. B. Viscoelasticity of human blood. Biophys. J. 12:1205–1217, 1972.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Bodnár, T., K. R. Rajagopal, and A. Sequeira. Simulation of the three-dimensional flow of blood using a shear-thinning viscoelastic fluid model. Math. Model. Nat. Phenom. 6:1–24, 2011.

    Article  MathSciNet  Google Scholar 

  153. Apostolidis, A. J., M. J. Armstrong, and A. N. Beris. Modeling of human blood rheology in transient shear flows. J. Rheol. (NY). 59:275–298, 2015.

    Article  CAS  Google Scholar 

  154. Bureau, M., J. C. Healy, D. Bourgoin, and M. Joly. Rheological hysteresis of blood at low shear rate. Biorheology. 17:191–203, 1980.

    Article  PubMed  CAS  Google Scholar 

  155. Sousa, P. C., et al. Shear viscosity and nonlinear behavior of whole blood under large amplitude oscillatory shear. Biorheology. 50:269–282, 2013.

    Article  PubMed  CAS  Google Scholar 

  156. Owens, R. G. A new microstructure-based constitutive model for human blood. J. Nonnewton. Fluid Mech. 140:57–70, 2006.

    Article  CAS  Google Scholar 

  157. Moyers-Gonzalez, M. A., R. G. Owens, and J. Fang. A non-homogeneous constitutive model for human blood. Part III. Oscillatory flow. J. Nonnewton. Fluid Mech. 155:161–173, 2008.

    Article  CAS  Google Scholar 

  158. Thurston, G. B. Elastic effects in pulsatile blood flow. Microvasc. Res. 9:145–157, 1975.

    Article  PubMed  CAS  Google Scholar 

  159. Dimakopoulos, Y., G. Kelesidis, S. Tsouka, G. C. Georgiou, and J. Tsamopoulos. Hemodynamics in stenotic vessels of small diameter under steady state conditions: effect of viscoelasticity and migration of red blood cells. Biorheology. 52:183–210, 2015.

    Article  PubMed  Google Scholar 

  160. Tsimouri, I. C., P. S. Stephanou, and V. G. Mavrantzas. A constitutive rheological model for agglomerating blood derived from nonequilibrium thermodynamics. Phys. Fluids. 30:30710, 2018.

    Article  Google Scholar 

  161. Iolov, A., A. S. Kane, Y. Bourgault, R. G. Owens, and A. Fortin. A finite element method for a microstructure-based model of blood. Int. J. Numer. Method. Biomed. Eng. 27:1321–1349, 2011.

    Article  MathSciNet  Google Scholar 

  162. Martins, T. D., J. M. Annichino-Bizzacchi, A. V. C. Romano, and R. M. Filho. Principal component analysis on recurrent venous thromboembolism. Clin. Appl. Thromb. 2019. https://doi.org/10.1177/1076029619895323.

    Article  Google Scholar 

  163. Cay, N., O. Unal, M. G. Kartal, M. Ozdemir, and M. Tola. Increased level of red blood cell distribution width is associated with deep venous thrombosis. Blood Coagul. Fibrinolysis. 24:727–731, 2013.

    Article  PubMed  CAS  Google Scholar 

  164. Vayá, A., and M. Suescun. Hemorheological parameters as independent predictors of venous thromboembolism. Clin. Hemorheol. Microcirc. 53:131–141, 2013.

    Article  PubMed  Google Scholar 

  165. Alt, E., S. Banyai, M. Banyai, and R. Koppensteiner. Blood rheology in deep venous thrombosis—relation to persistent and transient risk factors. Thromb. Res. 107:101–107, 2002.

    Article  PubMed  CAS  Google Scholar 

  166. Nader, E., et al. Blood rheology: key parameters, impact on blood flow, role in sickle cell disease and effects of exercise. Front. Physiol. 10:1329, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Mittal, R., et al. Computational modeling of cardiac hemodynamics: current status and future outlook. J. Comput. Phys. 305:1065–1082, 2016.

    Article  MathSciNet  Google Scholar 

  168. Quarteroni, A., T. Lassila, S. Rossi, and R. Ruiz-Baier. Integrated heart—coupling multiscale and multiphysics models for the simulation of the cardiac function. Comput. Methods Appl. Mech. Eng. 314:345–407, 2017.

    Article  MathSciNet  Google Scholar 

  169. Benra, F.-K., H. J. Dohmen, J. Pei, S. Schuster, and B. Wan. A comparison of one-way and two-way coupling methods for numerical analysis of fluid-structure interactions. J. Appl. Math. 2011:1–16, 2011.

    Article  MathSciNet  Google Scholar 

  170. Esmailie, F., H. Hatoum, V. H. Thourani, and L. P. Dasi. The impact of local blood residence time in neo-sinus on post transcatheter aortic valve replacement subclinical leaflet thrombosis—a commentary. Interdiscip. Cardiovasc. Thorac. Surg. 36:ivad12, 2023.

    Article  Google Scholar 

  171. Hirschhorn, M., V. Tchantchaleishvili, R. Stevens, J. Rossano, and A. Throckmorton. Fluid–structure interaction modeling in cardiovascular medicine—a systematic review 2017–2019. Med. Eng. Phys. 78:1–13, 2020.

    Article  PubMed  Google Scholar 

  172. Chnafa, C., S. Mendez, and F. Nicoud. Image-based large-eddy simulation in a realistic left heart. Comput. Fluids. 94:173–187, 2014.

    Article  MathSciNet  Google Scholar 

  173. Abbas, S. S., M. S. Nasif, and R. Al-Waked. State-of-the-art numerical fluid–structure interaction methods for aortic and mitral heart valves simulations: a review. Simulation. 98:3–34, 2022.

    Article  Google Scholar 

  174. Brooks, E. G., et al. Valves of the deep venous system: an overlooked risk factor. Blood. 114:1276–1279, 2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Randi, A. M., D. Jones, C. Peghaire, and D. J. Arachchillage. Mechanisms regulating heterogeneity of haemostatic gene expression in endothelial cells. J. Thromb. Haemost. 2023. https://doi.org/10.1016/j.jtha.2023.06.024.

    Article  PubMed  Google Scholar 

  176. Swaminathan, T. N., H. H. Hu, and A. A. Patel. Numerical analysis of the hemodynamics and embolus capture of a greenfield vena cava filter. J. Biomech. Eng. 128:360–370, 2006.

    Article  PubMed  CAS  Google Scholar 

  177. Quicken, S., et al. Computational modelling based recommendation on optimal dialysis needle positioning and dialysis flow in patients with arteriovenous grafts. Eur. J. Vasc. Endovasc. Surg. 59:288–294, 2020.

    Article  PubMed  Google Scholar 

  178. Bajd, F., et al. Impact of altered venous hemodynamic conditions on the formation of platelet layers in thromboemboli. Thromb. Res. 129:158–163, 2012.

    Article  PubMed  CAS  Google Scholar 

  179. Aycock, K. I., R. L. Campbell, K. B. Manning, and B. A. Craven. A resolved two-way coupled CFD/6-DOF approach for predicting embolus transport and the embolus-trapping efficiency of IVC filters. Biomechanics and Modeling in Mechanobiology, Vol. 16, Berlin: Springer, 2017.

    Google Scholar 

  180. Khodaee, F., B. Vahidi, and N. Fatouraee. Analysis of Mechanical Parameters on the Thromboembolism Using a Patient-Specific Computational Model. Biomechanics and Modeling in Mechanobiology, Vol. 15, Berlin: Springer, 2016.

    Google Scholar 

  181. Wang, Y., S. Downie, N. Wood, D. Firmin, and X. Y. Xu. Finite element analysis of the deformation of deep veins in the lower limb under external compression. Med. Eng. Phys. 35:515–523, 2013.

    Article  PubMed  Google Scholar 

  182. Lu, Y., Z. Yang, and Y. Wang. A critical review on the three-dimensional finite element modelling of the compression therapy for chronic venous insufficiency. Proc. Inst. Mech. Eng. H. 233:1089–1099, 2019. https://doi.org/10.1177/0954411919865385.

    Article  PubMed  Google Scholar 

  183. Buxton, G. A., and N. Clarke. Computational phlebology: the simulation of a vein valve. J. Biol. Phys. 32:507–521, 2006.

    Article  PubMed  Google Scholar 

  184. Simão, M., J. M. Ferreira, J. Mora-Rodriguez, and H. M. Ramos. Identification of DVT diseases using numerical simulations. Med. Biol. Eng. Comput. 54:1591–1609, 2016.

    Article  PubMed  Google Scholar 

  185. Chen, H. Y., J. A. Diaz, F. Lurie, S. D. Chambers, and G. S. Kassab. Hemodynamics of venous valve pairing and implications on helical flow. J. Vasc. Surg. Venous Lymphat. Disord. 6:517-522.e1, 2018.

    Article  PubMed  Google Scholar 

  186. Lurie, F., and R. L. Kistner. On the existence of helical flow in veins of the lower extremities. J. Vasc. Surg. Venous Lymphat. Disord. 1:134–138, 2013.

    Article  PubMed  Google Scholar 

  187. Ariane, M., et al. Using discrete multi-physics for studying the dynamics of emboli in flexible venous valves. Comput. Fluids. 166:57–63, 2018.

    Article  MathSciNet  Google Scholar 

  188. Hajati, Z., F. S. Moghanlou, M. Vajdi, S. E. Razavi, and S. Matin. Fluid-structure interaction of blood flow around a vein valve. BioImpacts. 10:169–175, 2020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Dydek, E. V., and E. L. Chaikof. Simulated thrombin responses in venous valves. J. Vasc. Surg. Venous Lymphat. Disord. 4:329–335, 2016.

    Article  PubMed  Google Scholar 

  190. Rausch, M. K., and J. D. Humphrey. A computational model of the biochemomechanics of an evolving occlusive thrombus. J. Elast. 129:125–144, 2017.

    Article  MathSciNet  Google Scholar 

  191. Jordan, S. W., M. A. Corriere, C. Y. Vossen, F. R. Rosendaal, and E. L. Chaikof. Flow-simulated thrombin generation profiles as a predictor of thrombotic risk among pre-menopausal women. Thromb. Haemost. 108:258–265, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Yesudasan, S., and R. D. Averett. Recent advances in computational modeling of fibrin clot formation: a review. Comput. Biol. Chem. 83:107148, 2019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Anand, M., and K. R. Rajagopal. A short review of advances in the modelling of blood rheology and clot formation. Fluids. 2:35, 2017.

    Article  Google Scholar 

  194. Zheng, X., A. Yazdani, H. Li, J. D. Humphrey, and G. E. Karniadakis. A three-dimensional phase-field model for multiscale modeling of thrombus biomechanics in blood vessels. PLoS Comput. Biol. 16:e1007709, 2020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Wang, K. Y., et al. Using predictive modeling and supervised machine learning to identify patients at risk for venous thromboembolism following posterior lumbar fusion. Glob. Spine J. 13:1097–1103, 2023.

    Article  Google Scholar 

  196. Bouchnita, A., K. Terekhov, P. Nony, Y. Vassilevski, and V. Volpert. A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions. PLoS One.15:e0235392, 2020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Kamm, R. D. Bioengineering studies of periodic external compression as prophylaxis against deep vein thrombosis—Part I: numerical studies. J. Biomech. Eng. 104:87–95, 1982.

    Article  PubMed  CAS  Google Scholar 

  198. Dai, G., R. D. Kamm, and J. P. Gertler. The effects of external compression on venous blood flow and tissue deformation in the lower leg. J. Biomech. Eng. 121:557–564, 1999.

    Article  PubMed  CAS  Google Scholar 

  199. Polanczyk, A., et al. Computational fluid dynamic technique for assessment of how changing character of blood flow and different value of hct influence blood hemodynamic in dissected aorta. Diagnostics. 11:1866, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Garber, L., S. Khodaei, N. Maftoon, and Z. Keshavarz-Motamed. Impact of TAVR on coronary artery hemodynamics using clinical measurements and image-based patient-specific in silico modeling. Sci. Rep. 13:8948, 2023.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Conti, M., et al. Carotid artery hemodynamics before and after stenting: a patient specific CFD study. Comput. Fluids. 141:62–74, 2016.

    Article  MathSciNet  Google Scholar 

  202. Xu, P., et al. Patient-specific structural effects on hemodynamics in the ischemic lower limb artery. Sci. Rep. 6:39225, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keefe B. Manning.

Ethics declarations

Conflict of interest

JCC has received research funding from Grifols Biopharma and holds a patent (17/146,912) related to use of antithrombin for improving chemoprophylaxis and mitigating the incidence of venous thromboembolism after traumatic injury. All other authors have no competing interests or conflicts related to this manuscript.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watson, C., Saaid, H., Vedula, V. et al. Venous Thromboembolism: Review of Clinical Challenges, Biology, Assessment, Treatment, and Modeling. Ann Biomed Eng 52, 467–486 (2024). https://doi.org/10.1007/s10439-023-03390-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03390-z

Keywords

Navigation