Skip to main content
Log in

Computational Phlebology: The Simulation of a Vein Valve

  • Research Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We present a three-dimensional computer simulation of the dynamics of a vein valve. In particular, we couple the solid mechanics of the vein wall and valve leaflets with the fluid dynamics of the blood flow in the valve. Our model captures the unidirectional nature of blood flow in vein valves; blood is allowed to flow proximally back to the heart, while retrograde blood flow is prohibited through the occlusion of the vein by the valve cusps. Furthermore, we investigate the dynamics of the valve opening area and the blood flow rate through the valve, gaining new insights into the physics of vein valve operation. It is anticipated that through computer simulations we can help raise our understanding of venous hemodynamics and various forms of venous dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vander, A., Sherman, J., Luciano, D.: Human Physiology, 7th edn. McGraw-Hill, New York (1998)

    Google Scholar 

  2. Sherwood, L.: Human Physiology. Thomson Learning, London (2004)

    Google Scholar 

  3. Patton, T.: The Human Body in Health and Disease. Elsevier, Holland (2005)

    Google Scholar 

  4. Notowitz, L.B.: Normal venous anatomy and physiology of the lower extremity. J. Vasc. Nurs. 11, 39–42 (1993)

    Google Scholar 

  5. Buescher, C.D., Nachiappan, B., Brumbaugh, J.M., Hoo, K.A., Janssen, H.F.: Experimental studies of the effects of abnormal venous valves on fluid flow. Biotechnol. Prog. 21, 938–945 (2005)

    Article  Google Scholar 

  6. Ono, T., Bergan, J.J., Schmid-Schonbein, G.W., Takase, S.: Monocyte infiltration into venous valves. J. Vasc. Surg. 27, 158–166 (1998)

    Article  Google Scholar 

  7. Ackroyd, J.S., Pattison, M., Browse, N.L.: A study of the mechanical properties of fresh and preserved human femoral vein wall and valve cusps. Br. J. Surg. 72, 117–119 (1985)

    Article  Google Scholar 

  8. van Bemmelen, P.S., Beach, K., Bedford, G., Strandness, D.E.: The mechanism of venous valve closure. Arch. Surg. 125, 617–619 (1990)

    Google Scholar 

  9. Qui, Y., Quijano, R.C., Wang, S.K., Hwang, N.H.C.: Fluid dynamics of venous valve closure. Ann. Biomed. Eng. 23, 750–759 (1995)

    Article  Google Scholar 

  10. Lurie, F., Kistner, R.L., Eklof, B.: The mechanism of venuous valve closure in normal physiologic conditions. J. Vasc. Surg. 35, 713–717 (2002)

    Article  Google Scholar 

  11. Lurie, F., Kistner, R.L., Eklof, B., Kessler, D.: Mechanism of venous valve closure and role of the valve in circulation: a new concept. J. Vasc. Surg. 38, 955–961 (2003)

    Article  Google Scholar 

  12. Lurie, F., Kistner, R.L., Eklof, B., Kessler, D.: A new concept of the mechanism of venous valve closure and role of valves in circulation. Phlebology 13, 3–5 (2006)

    Google Scholar 

  13. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  14. Buxton, G.A., Care, C.M., Cleaver, D.J.: A lattice spring model of heterogeneous materials with plasticity. Model. Simul. Mater. Sci. Eng. 9, 485–497 (2001) and references therein

    Article  ADS  Google Scholar 

  15. Monette, L., Anderson, M.P.: Elastic and fracture properties of the 2-dimensional triangular and square lattices. Model. Simul. Mater. Sci. Eng. 2, 53–66 (1994)

    Article  ADS  Google Scholar 

  16. Tuckerman, M., Berne, B.J., Martyna, G.J.: Reversible multiple time scale molecular-dynamics. J. Chem. Phys. 97, 1990 (1992)

    Article  ADS  Google Scholar 

  17. Krafczyk, M., Cerrolaza, M., Schulz, M., Rank, E.: Analysis of 3D transient blood flow passing through an artificial aortic valve by lattice-Boltzmann methods. J. Biomech. 31, 453–462 (1998)

    Article  Google Scholar 

  18. Dupin, M.M., Halliday, I., Care, C.M.: Multi-component lattice Boltzmann equation for mesoscale blood flow. J. Phys. A 36, 8517 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Dupin, M.M., Halliday, I., Care, C.M.: A multi-component lattice Boltzmann scheme: towards the mesoscale simulation of blood flow. Med. Eng. Phys. 8, 13–18 (2006)

    Article  Google Scholar 

  20. Boyd, J., Buick, J., Cosgrove, J.A., Stansell, P.: Application of the lattice Boltzmann model to simulated stenosis growth in a two-dimensional carotid artery. Phys. Med. Biol. 50, 4783–4796 (2005)

    Article  Google Scholar 

  21. Buxton, G.A., Verberg, R., Jasnow, D., Balazs, A.C.: Newtonian fluid meets an elastic solid: coupling lattice Boltzmann and lattice spring models. Phys. Rev. E 71, 056707 (2005)

    Article  ADS  Google Scholar 

  22. Balazs, A.C.: Challenges in polymer science: controlling vesicle-substrate interactions. J. Polym. Sci. Part B, Polym. Phys. 43, 3357–3360 (2005)

    Article  Google Scholar 

  23. Alexeev, A., Verberg, R., Balazs, A.C.: Modeling the motion of microcapsules on compliant polymeric surfaces. Macromolecules 38, 10244–10260 (2005)

    Article  Google Scholar 

  24. Alexeev, A., Verberg, R., Balazs, A.C.: Designing compliant substrates to regulate the motion of vesicles. Phys. Rev. Lett. 96, 148103 (2006)

    Article  ADS  Google Scholar 

  25. Alexeev, A., Verberg, R., Balazs, A.C.: Modeling the interactions between deformable capsules rolling on a compliant surface. Soft Matter 2, 499–509 (2006)

    Article  Google Scholar 

  26. Smith, K.A., Alexeev, A., Verberg, R., Balazs, A.C.: Designing a simple ratcheting system to sort microcapsules by mechanical properties. Langmuir 22, 6739–6742 (2006)

    Article  Google Scholar 

  27. Verberg, R., Ladd, A.J.C.: Simulation of chemical erosion in rough fractures. Phys. Rev. E 65, 056311 (2002)

    Article  ADS  Google Scholar 

  28. Ladd, A.J.C., Verberg, R.: Lattice-Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104, 1191 (2001) and references therein

    Article  MATH  MathSciNet  Google Scholar 

  29. Frisch, U., d’Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y., Rivet, J.-P.: Lattice gas hydrodynamics in two and three dimensions. Complex Syst. 1, 649 (1987)

    MATH  Google Scholar 

  30. He, X., Luo, L.-S.: A priori derivation of the lattice Boltzmann equation. Phys. Rev. E 55, R6333 (1997)

    Article  ADS  Google Scholar 

  31. He, X., Luo, L.-S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811 (1997)

    Article  ADS  Google Scholar 

  32. d’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.-S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. London, Ser. A 360, 437 (2002)

    Article  MATH  ADS  Google Scholar 

  33. Wesly, R.L., Vaishnav, R.N., Fuchs, J.C., Patel, D.J., Greenfield, J.C.: Static linear and nonlinear elastic properties of normal and arterialized venous tissue in dogs and man. Circ. Res. 37, 509 (1975)

    Google Scholar 

  34. Guyton, A.C., Hall, J.E.: Textbook of Medical Physiology. Elsevier, Philadelphia (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin A. Buxton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buxton, G.A., Clarke, N. Computational Phlebology: The Simulation of a Vein Valve. J Biol Phys 32, 507–521 (2006). https://doi.org/10.1007/s10867-007-9033-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-007-9033-4

Key words

Navigation