Skip to main content

Advertisement

Log in

Pathophysiology of deep vein thrombosis

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Deep venous thrombosis is a frequent, multifactorial disease and a leading cause of morbidity and mortality. Most of the time deep venous thrombosis is triggered by the interaction between acquired risk factors, such as hip fracture, pregnancy, and immobility, and hereditary risk factors such as thrombophilias. The mechanisms underlying deep venous thrombosis are not fully elucidated; however, in recent years, important advances have shed light on the role of venous flow, endothelium, platelets, leukocytes, and the interaction between inflammation and hemostasis. It has been described that the alteration of venous blood flow produces endothelial activation, favoring the adhesion of platelets and leukocytes, which, through tissue factor expression and neutrophil extracellular traps formation, contribute to the activation of coagulation, trapping more cells, such as red blood cells. Thus, the concerted interaction of these phenomena allows the formation and growth of the thrombus. In this work, the main mechanisms involved in the pathophysiology of deep vein thrombosis will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jerjes-Sanchez C, Martinez-Sanchez C, Borrayo-Sanchez G, Carrillo-Calvillo J, Juarez-Herrera U, Quintanilla-Gutierrez J. Third national registry of acute coronary syndromes (RENASICA III). Archivos de Cardiologia de Mexico. 2015;85(3):207–14.

    PubMed  Google Scholar 

  2. Wolberg AS, Rosendaal FR, Weitz JI, et al. Venous thrombosis. Nat Rev Disease Primers. 2015;1:15006.

    PubMed  Google Scholar 

  3. Bruni-Fitzgerald KR. Venous thromboembolism: an overview. J Vascular Nurs Official Publ Soc Peripheral Vascular Nurs. 2015;33(3):95–9.

    Google Scholar 

  4. Nicolaides AN, Kakkar VV, Field ES, Renney JT. The origin of deep vein thrombosis: a venographic study. Br J Radiol. 1971;44(525):653–63.

    CAS  PubMed  Google Scholar 

  5. Aird WC. Vascular bed-specific thrombosis. J Thrombosis Haemostasis: JTH. 2007;5(Suppl 1):283–91.

    CAS  Google Scholar 

  6. Raffini L, Huang YS, Witmer C, Feudtner C. Dramatic increase in venous thromboembolism in children’s hospitals in the United States from 2001 to 2007. Pediatrics. 2009;124(4):1001–8.

    PubMed  Google Scholar 

  7. Centre-Acute N. Venous Thromboembolism: Reducing the Risk of Venous Thromboembolism (Deep Vein Thrombosis and Pulmonary Embolism) in Patients Admitted to Hospital. London: Royal College of Physicians; 2010.

    Google Scholar 

  8. Cushman M. Epidemiology and risk factors for venous thrombosis. Semin Hematol. 2007;44(2):62–9.

    PubMed  PubMed Central  Google Scholar 

  9. Lindqvist P, Dahlback B, Marsal K. Thrombotic risk during pregnancy: a population study. Obstet Gynecol. 1999;94(4):595–9.

    CAS  PubMed  Google Scholar 

  10. Jaffray J, Young G. Deep vein thrombosis in pediatric patients. Pediatric Blood Cancer. 2018; 65(3).

  11. Koupenova M, Kehrel BE, Corkrey HA, Freedman JE. Thrombosis and platelets: an update. Eur Heart J. 2017;38(11):785–91.

    CAS  PubMed  Google Scholar 

  12. Silverstein MD, Heit JA, Mohr DN, Petterson TM, O’Fallon WM, Melton LJ 3rd. Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch Intern Med. 1998;158(6):585–93.

    CAS  PubMed  Google Scholar 

  13. Anderson FA Jr, Spencer FA. Risk factors for venous thromboembolism. Circulation. 2003;107(23 Suppl 1):I9-16.

    PubMed  Google Scholar 

  14. Pomp ER, Lenselink AM, Rosendaal FR, Doggen CJ. Pregnancy, the postpartum period and prothrombotic defects: risk of venous thrombosis in the MEGA study. J Thrombosis Haemostasis JTH. 2008;6(4):632–7.

    CAS  Google Scholar 

  15. Rosendaal FR, Reitsma PH. Genetics of venous thrombosis. J Thrombosis Haemostasis: JTH. 2009;7(Suppl 1):301–4.

    CAS  Google Scholar 

  16. Pomp ER, Doggen CJ, Vos HL, Reitsma PH, Rosendaal FR. Polymorphisms in the protein C gene as risk factor for venous thrombosis. Thromb Haemost. 2009;101(1):62–7.

    CAS  PubMed  Google Scholar 

  17. Lindstrom S, Wang L, Smith EN, et al. Genomic and transcriptomic association studies identify 16 novel susceptibility loci for venous thromboembolism. Blood. 2019;134(19):1645–57.

    PubMed  PubMed Central  Google Scholar 

  18. Kushner A, West DW, Pillarisetty LS. Virchow Triad. StatPearls. Treasure Island (FL) 2020.

  19. Panova-Noeva M, Wagner B, Nagler M, et al. Comprehensive platelet phenotyping supports the role of platelets in the pathogenesis of acute venous thromboembolism—results from clinical observation studies. EBioMedicine. 2020;60:102978.

  20. Mackman N. New insights into the mechanisms of venous thrombosis. J Clin Investig. 2012;122(7):2331–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Brill A, Fuchs TA, Chauhan AK, et al. von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood. 2011;117(4):1400–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. von Bruhl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–35.

    Google Scholar 

  23. Pinsky DJ, Naka Y, Liao H, et al. Hypoxia-induced exocytosis of endothelial cell Weibel-Palade bodies. A mechanism for rapid neutrophil recruitment after cardiac preservation. J Clin Investig. 1996;97(2):493–500.

  24. Sparkenbaugh EM, Chantrathammachart P, Wang S, et al. Excess of heme induces tissue factor-dependent activation of coagulation in mice. Haematologica. 2015;100(3):308–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bergan JJ, Schmid-Schonbein GW, Smith PD, Nicolaides AN, Boisseau MR, Eklof B. Chronic venous disease. N Engl J Med. 2006;355(5):488–98.

    CAS  PubMed  Google Scholar 

  26. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):327–87.

    PubMed  Google Scholar 

  27. Lurie F, Kistner RL, Eklof B, Kessler D. Mechanism of venous valve closure and role of the valve in circulation: a new concept. J Vasc Surg. 2003;38(5):955–61.

    PubMed  Google Scholar 

  28. Traub O, Berk BC. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol. 1998;18(5):677–85.

    CAS  PubMed  Google Scholar 

  29. Yoshizumi M, Abe J, Tsuchiya K, Berk BC, Tamaki T. Stress and vascular responses: atheroprotective effect of laminar fluid shear stress in endothelial cells: possible role of mitogen-activated protein kinases. J Pharmacol Sci. 2003;91(3):172–6.

    CAS  PubMed  Google Scholar 

  30. Chappell DC, Varner SE, Nerem RM, Medford RM, Alexander RW. Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium. Circ Res. 1998;82(5):532–9.

    CAS  PubMed  Google Scholar 

  31. Methe H, Balcells M, Alegret MdelC, et al. Vascular bed origin dictates flow pattern regulation of endothelial adhesion molecule expression. Am J Physiol Heart Circulatory Physiol. 2007;292(5):H2167–75.

  32. Ono T, Bergan JJ, Schmid-Schonbein GW, Takase S. Monocyte infiltration into venous valves. J Vasc Surg. 1998;27(1):158–66.

    CAS  PubMed  Google Scholar 

  33. Takase S, Pascarella L, Lerond L, Bergan JJ, Schmid-Schonbein GW. Venous hypertension, inflammation and valve remodeling. Eur J Vascular Endovascular Surg Official J Eur Soc Vascular Surg. 2004;28(5):484–93.

    CAS  Google Scholar 

  34. Bergan JJ. Chronic venous insufficiency and the therapeutic effects of Daflon 500 mg. Angiology. 2005;56(Suppl 1):S21–4.

    PubMed  Google Scholar 

  35. Hamer JD, Malone PC, Silver IA. The PO2 in venous valve pockets: its possible bearing on thrombogenesis. Br J Surg. 1981;68(3):166–70.

    CAS  PubMed  Google Scholar 

  36. Wolin MS, Ahmad M, Gupte SA. Oxidant and redox signaling in vascular oxygen sensing mechanisms: basic concepts, current controversies, and potential importance of cytosolic NADPH. Am J Physiol Lung Cell Mol Physiol. 2005;289(2):L159–73.

    CAS  PubMed  Google Scholar 

  37. Chandel NS. Mitochondrial regulation of oxygen sensing. Adv Exp Med Biol. 2010;661:339–54.

    CAS  PubMed  Google Scholar 

  38. Yan SF, Lu J, Zou YS, et al. Hypoxia-associated induction of early growth response-1 gene expression. J Biol Chem. 1999;274(21):15030–40.

    CAS  PubMed  Google Scholar 

  39. Khachigian LM. Early growth response-1 in cardiovascular pathobiology. Circ Res. 2006;98(2):186–91.

    CAS  PubMed  Google Scholar 

  40. Bovill EG, van der Vliet A. Venous valvular stasis-associated hypoxia and thrombosis: What is the link? Annu Rev Physiol. 2011;73:527–45.

    CAS  PubMed  Google Scholar 

  41. Schindler U, Baichwal VR. Three NF-kappa B binding sites in the human E-selectin gene required for maximal tumor necrosis factor alpha-induced expression. Mol Cell Biol. 1994;14(9):5820–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yan SF, Fujita T, Lu J, et al. Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat Med. 2000;6(12):1355–61.

    CAS  PubMed  Google Scholar 

  43. Chelombitko MA, Fedorov AV, Ilyinskaya OP, Zinovkin RA, Chernyak BV. Role of Reactive Oxygen Species in Mast Cell Degranulation. Biochemistry Biokhimiia. 2016;81(12):1564–77.

    CAS  PubMed  Google Scholar 

  44. Ponomaryov T, Payne H, Fabritz L, Wagner DD, Brill A. Mast cells granular contents are crucial for deep vein thrombosis in mice. Circ Res. 2017;121(8):941–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Miki I, Kusano A, Ohta S, et al. Histamine enhanced the TNF-alpha-induced expression of E-selectin and ICAM-1 on vascular endothelial cells. Cell Immunol. 1996;171(2):285–8.

    CAS  PubMed  Google Scholar 

  46. Erent M, Meli A, Moisoi N, et al. Rate, extent and concentration dependence of histamine-evoked Weibel-Palade body exocytosis determined from individual fusion events in human endothelial cells. J Physiol. 2007;583(Pt 1):195–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Steffel J, Akhmedov A, Greutert H, Luscher TF, Tanner FC. Histamine induces tissue factor expression: implications for acute coronary syndromes. Circulation. 2005;112(3):341–9.

    CAS  PubMed  Google Scholar 

  48. Gross PL, Aird WC. The endothelium and thrombosis. Semin Thromb Hemost. 2000;26(5):463–78.

    CAS  PubMed  Google Scholar 

  49. Bochenek ML, Schafer K. Role of endothelial cells in acute and chronic thrombosis. Hamostaseologie. 2019;39(2):128–39.

    PubMed  Google Scholar 

  50. Rajendran P, Rengarajan T, Thangavel J, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Poredos P, Jezovnik MK. Endothelial dysfunction and venous thrombosis. Angiology. 2018;69(7):564–7.

    PubMed  Google Scholar 

  52. Ramacciotti E, Myers DD Jr, Wrobleski SK, et al. P-selectin/ PSGL-1 inhibitors versus enoxaparin in the resolution of venous thrombosis: a meta-analysis. Thromb Res. 2010;125(4):e138–42.

    CAS  PubMed  Google Scholar 

  53. Jezovnik MK, Fareed J, Poredos P. Patients With a History of Idiopathic Deep Venous Thrombosis Have Long-Term Increased Levels of Inflammatory Markers and Markers of Endothelial Damage. Clin Appl Thrombosis/Hemostasis Official J Int Acad Clin Appl Thrombosis/Hemostasis. 2017;23(2):124–31.

    CAS  Google Scholar 

  54. Poredos P, Jezovnik MK. In patients with idiopathic venous thrombosis, interleukin-10 is decreased and related to endothelial dysfunction. Heart Vessels. 2011;26(6):596–602.

    PubMed  Google Scholar 

  55. Myers DD Jr. Pathophysiology of venous thrombosis. Phlebology. 2015;30(1 Suppl):7–13.

    PubMed  Google Scholar 

  56. Bochenek ML, Schutz E, Schafer K. Endothelial cell senescence and thrombosis: ageing clots. Thromb Res. 2016;147:36–45.

    CAS  PubMed  Google Scholar 

  57. Comi P, Chiaramonte R, Maier JA. Senescence-dependent regulation of type 1 plasminogen activator inhibitor in human vascular endothelial cells. Exp Cell Res. 1995;219(1):304–8.

    CAS  PubMed  Google Scholar 

  58. Sato I, Kaji K, Morita I, Nagao M, Murota S. Augmentation of endothelin-1, prostacyclin and thromboxane A2 secretion associated with in vitro ageing in cultured human umbilical vein endothelial cells. Mech Ageing Dev. 1993;71(1–2):73–84.

    CAS  PubMed  Google Scholar 

  59. Yanaka M, Honma T, Sato K, et al. Increased monocytic adhesion by senescence in human umbilical vein endothelial cells. Biosci Biotechnol Biochem. 2011;75(6):1098–103.

    CAS  PubMed  Google Scholar 

  60. Hemmeryckx B, Emmerechts J, Bovill EG, Hoylaerts MF, Lijnen HR. Effect of ageing on the murine venous circulation. Histochem Cell Biol. 2012;137(4):537–46.

    CAS  PubMed  Google Scholar 

  61. Budnik I, Brill A. Immune factors in deep vein thrombosis initiation. Trends Immunol. 2018;39(8):610–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Li WD, Li XQ. Endothelial progenitor cells accelerate the resolution of deep vein thrombosis. Vascul Pharmacol. 2016;83:10–6.

    CAS  PubMed  Google Scholar 

  63. Dai B, Li L, Li Q, et al. Novel microspheres reduce the formation of deep venous thrombosis and repair the vascular wall in a rat model. Blood Coagulation Fibrinolysis Int J Haemostasis Thrombosis. 2017;28(5):398–406.

    CAS  Google Scholar 

  64. Wakefield TW, Myers DD, Henke PK. Role of selectins and fibrinolysis in VTE. Thromb Res. 2009;123(Suppl 4):S35-40.

    CAS  PubMed  Google Scholar 

  65. Schulz C, Engelmann B, Massberg S. Crossroads of coagulation and innate immunity: the case of deep vein thrombosis. J Thrombosis Haemostasis: JTH. 2013;11(Suppl 1):233–41.

    Google Scholar 

  66. Palomo I, Pereira J, Palma J. HEMATOLOGÍA. Fisiopatología y Diagnóstico. 1st ed. Talca: Editorial Universidad de Talca; 2005.

  67. Gremmel T, Frelinger AL 3rd, Michelson AD. Platelet Physiology. Semin Thromb Hemost. 2016;42(3):191–204.

    CAS  PubMed  Google Scholar 

  68. Sorrentino S, Studt JD, Horev MB, Medalia O, Sapra KT. Toward correlating structure and mechanics of platelets. Cell Adh Migr. 2016;10(5):568–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Stone J, Hangge P, Albadawi H, et al. Deep vein thrombosis: pathogenesis, diagnosis, and medical management. Cardiovascular Diagnosis Therapy. 2017;7(Suppl 3):S276–84.

    PubMed  PubMed Central  Google Scholar 

  70. Takahashi M, Yamashita A, Moriguchi-Goto S, et al. Critical role of von Willebrand factor and platelet interaction in venous thromboembolism. Histol Histopathol. 2009;24(11):1391–8.

    CAS  PubMed  Google Scholar 

  71. Kang C, Bonneau M, Brouland JP, Bal dit Sollier C, Drouet L. In vivo pig models of venous thrombosis mimicking human disease. Thrombosis and haemostasis. 2003;89(2):256–63.

  72. Lehmann M, Schoeman RM, Krohl PJ, et al. Platelets Drive Thrombus Propagation in a Hematocrit and Glycoprotein VI-Dependent Manner in an In Vitro Venous Thrombosis Model. Arterioscler Thromb Vasc Biol. 2018;38(5):1052–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Heestermans M, Salloum-Asfar S, Streef T, et al. Mouse venous thrombosis upon silencing of anticoagulants depends on tissue factor and platelets, not FXII or neutrophils. Blood. 2019;133(19):2090–9.

    CAS  PubMed  Google Scholar 

  74. Payne H, Ponomaryov T, Watson SP, Brill A. Mice with a deficiency in CLEC-2 are protected against deep vein thrombosis. Blood. 2017;129(14):2013–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Riedl J, Preusser M, Nazari PM, et al. Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism. Blood. 2017;129(13):1831–9.

    CAS  PubMed  Google Scholar 

  76. Ding P, Zhang S, Yu M, et al. IL-17A promotes the formation of deep vein thrombosis in a mouse model. Int Immunopharmacol. 2018;57:132–8.

    CAS  PubMed  Google Scholar 

  77. Subramaniam S, Jurk K, Hobohm L, et al. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood. 2017;129(16):2291–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Reimers RC, Sutera SP, Joist JH. Potentiation by red blood cells of shear-induced platelet aggregation: relative importance of chemical and physical mechanisms. Blood. 1984;64(6):1200–6.

    CAS  PubMed  Google Scholar 

  79. Goel MS, Diamond SL. Adhesion of normal erythrocytes at depressed venous shear rates to activated neutrophils, activated platelets, and fibrin polymerized from plasma. Blood. 2002;100(10):3797–803.

    CAS  PubMed  Google Scholar 

  80. Muller F, Mutch NJ, Schenk WA, et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell. 2009;139(6):1143–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Reinhardt C, von Bruhl ML, Manukyan D, et al. Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation. J Clin Investig. 2008;118(3):1110–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013;13(1):34–45.

    CAS  PubMed  Google Scholar 

  83. Setiadi H, Yago T, Liu Z, McEver RP. Endothelial signaling by neutrophil-released oncostatin M enhances P-selectin-dependent inflammation and thrombosis. Blood Adv. 2019;3(2):168–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.

    CAS  PubMed  Google Scholar 

  85. Papayannopoulos V, Zychlinsky A. NETs: a new strategy for using old weapons. Trends Immunol. 2009;30(11):513–21.

    CAS  PubMed  Google Scholar 

  86. Wang Y, Gao H, Shi C, et al. Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbalpha. Nat Commun. 2017;8:15559.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Dyer MR, Chen Q, Haldeman S, et al. Deep vein thrombosis in mice is regulated by platelet HMGB1 through release of neutrophil-extracellular traps and DNA. Sci Rep. 2018;8(1):2068.

    PubMed  PubMed Central  Google Scholar 

  88. Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107(36):15880–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood. 2014;123(18):2768–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Brill A, Fuchs TA, Savchenko AS, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thrombosis Haemostasis: JTH. 2012;10(1):136–44.

    CAS  Google Scholar 

  91. Semeraro F, Ammollo CT, Morrissey JH, et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118(7):1952–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Massberg S, Grahl L, von Bruehl ML, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16(8):887–96.

    CAS  PubMed  Google Scholar 

  93. Ramacciotti E, Hawley AE, Farris DM, et al. Leukocyte- and platelet-derived microparticles correlate with thrombus weight and tissue factor activity in an experimental mouse model of venous thrombosis. Thromb Haemost. 2009;101(4):748–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Pfeiler S, Stark K, Massberg S, Engelmann B. Propagation of thrombosis by neutrophils and extracellular nucleosome networks. Haematologica. 2017;102(2):206–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Weitz JI. Factor XI and factor XII as targets for new anticoagulants. Thromb Res. 2016;141(Suppl 2):S40–5.

    CAS  PubMed  Google Scholar 

  96. Salomon O, Steinberg DM, Zucker M, Varon D, Zivelin A, Seligsohn U. Patients with severe factor XI deficiency have a reduced incidence of deep-vein thrombosis. Thromb Haemost. 2011;105(2):269–73.

    CAS  PubMed  Google Scholar 

  97. Buller HR, Bethune C, Bhanot S, et al. Factor XI antisense oligonucleotide for prevention of venous thrombosis. N Engl J Med. 2015;372(3):232–40.

    PubMed  Google Scholar 

  98. Verhamme P, Yi BA, Segers A, et al. Abelacimab for Prevention of Venous Thromboembolism. N Engl J Med. 2021;385(7):609–17.

    CAS  PubMed  Google Scholar 

  99. Kool RO, Kohler HP, Coutinho JM, et al. Coagulation factor XIII-A subunit and activation peptide levels in individuals with established symptomatic acute deep vein thrombosis. Thromb Res. 2017;159:96–9.

    CAS  PubMed  Google Scholar 

  100. Walton BL, Byrnes JR, Wolberg AS. Fibrinogen, red blood cells, and factor XIII in venous thrombosis. J Thrombosis Haemostasis: JTH. 2015;13(Suppl 1):S208–15.

    CAS  Google Scholar 

  101. Aleman MM, Walton BL, Byrnes JR, Wolberg AS. Fibrinogen and red blood cells in venous thrombosis. Thromb Res. 2014;133(Suppl 1):S38-40.

    PubMed  PubMed Central  Google Scholar 

  102. Whelihan MF, Lim MY, Mooberry MJ, et al. Thrombin generation and cell-dependent hypercoagulability in sickle cell disease. J Thrombosis Haemostasis: JTH. 2016;14(10):1941–52.

    CAS  Google Scholar 

  103. Saghazadeh A, Hafizi S, Rezaei N. Inflammation in venous thromboembolism: Cause or consequence? Int Immunopharmacol. 2015;28(1):655–65.

    CAS  PubMed  Google Scholar 

  104. Bertin FR, Rys RN, Mathieu C, Laurance S, Lemarie CA, Blostein MD. Natural killer cells induce neutrophil extracellular trap formation in venous thrombosis. J Thrombosis Haemostasis JTH. 2019;17(2):403–14.

    Google Scholar 

  105. Nosaka M, Ishida Y, Kimura A, et al. Absence of IFN-gamma accelerates thrombus resolution through enhanced MMP-9 and VEGF expression in mice. J Clin Investig. 2011;121(7):2911–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang Y, Zhang Z, Wei R, et al. IL (Interleukin)-6 Contributes to Deep Vein Thrombosis and Is Negatively Regulated by miR-338-5p. Arterioscler Thromb Vasc Biol. 2020;40(2):323–34.

    CAS  PubMed  Google Scholar 

  107. Mo JW, Zhang DF, Ji GL, Liu XZ, Fan B. Detection of targets and their mechanisms for early diagnosis of traumatic deep vein thrombosis. Genetics Moler Research GMR. 2015;14(1):2413–21.

    CAS  Google Scholar 

  108. Gupta N, Sahu A, Prabhakar A, et al. Activation of NLRP3 inflammasome complex potentiates venous thrombosis in response to hypoxia. Proc Natl Acad Sci USA. 2017;114(18):4763–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Nosaka M, Ishida Y, Kimura A, et al. Contribution of the TNF-alpha (Tumor Necrosis Factor-alpha)-TNF-Rp55 (Tumor Necrosis Factor Receptor p55) Axis in the Resolution of Venous Thrombus. Arterioscler Thromb Vasc Biol. 2018;38(11):2638–50.

    CAS  PubMed  Google Scholar 

  110. Mo JW, Zhang DF, Ji GL, Liu XZ, Fan B. TGF-beta1 and Serpine 1 expression changes in traumatic deep vein thrombosis. Genetics Mole Res GMR. 2015;14(4):13835–42.

    CAS  Google Scholar 

  111. Henke PK, Wakefield TW, Kadell AM, et al. Interleukin-8 administration enhances venous thrombosis resolution in a rat model. J Surg Res. 2001;99(1):84–91.

    CAS  PubMed  Google Scholar 

  112. Yago T, Liu Z, Ahamed J, McEver RP. Cooperative PSGL-1 and CXCR2 signaling in neutrophils promotes deep vein thrombosis in mice. Blood. 2018;132(13):1426–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Laurance S, Bertin FR, Ebrahimian T, et al. Gas6 Promotes Inflammatory (CCR2(hi)CX3CR1(lo)) Monocyte Recruitment in Venous Thrombosis. Arterioscler Thromb Vasc Biol. 2017;37(7):1315–22.

    CAS  PubMed  Google Scholar 

  114. Qin J, Liang H, Shi D, et al. A panel of microRNAs as a new biomarkers for the detection of deep vein thrombosis. J Thromb Thrombolysis. 2015;39(2):215–21.

    CAS  PubMed  Google Scholar 

  115. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    CAS  PubMed  Google Scholar 

  116. Soifer HS, Rossi JJ, Saetrom P. MicroRNAs in disease and potential therapeutic applications. Mole Therapy J Am Soc Gene Therapy. 2007;15(12):2070–9.

    CAS  Google Scholar 

  117. Latronico MV, Catalucci D, Condorelli G. Emerging role of microRNAs in cardiovascular biology. Circ Res. 2007;101(12):1225–36.

    CAS  PubMed  Google Scholar 

  118. Jin J, Wang C, Ouyang Y, Zhang D. Elevated miR-195-5p expression in deep vein thrombosis and mechanism of action in the regulation of vascular endothelial cell physiology. Exp Ther Med. 2019;18(6):4617–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kong L, Hu N, Du X, et al. Upregulation of miR-483-3p contributes to endothelial progenitor cells dysfunction in deep vein thrombosis patients via SRF. J Transl Med. 2016;14:23.

    PubMed  PubMed Central  Google Scholar 

  120. Zhang Y, Miao X, Zhang Z, et al. miR-374b-5p is increased in deep vein thrombosis and negatively targets IL-10. J Mol Cell Cardiol. 2020;144:97–108.

    CAS  PubMed  Google Scholar 

  121. Kong L, Du X, Hu N, et al. Downregulation of let-7e-5p contributes to endothelial progenitor cell dysfunction in deep vein thrombosis via targeting FASLG. Thromb Res. 2016;138:30–6.

    CAS  PubMed  Google Scholar 

  122. Li Z, Ni J. Role of microRNA-26a in the diagnosis of lower extremity deep vein thrombosis in patients with bone trauma. Exp Ther Med. 2017;14(5):5069–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Sun S, Chai S, Zhang F, Lu L. Overexpressed microRNA-103a-3p inhibits acute lower-extremity deep venous thrombosis via inhibition of CXCL12. IUBMB Life. 2020;72(3):492–504.

    CAS  PubMed  Google Scholar 

  124. Zhang P, Zhao Q, Gong K, et al. Downregulation of miR-103a-3p contributes to endothelial progenitor cell dysfunction in deep vein thrombosis through PTEN targeting. Ann Vasc Surg. 2020;64:339–46.

    PubMed  Google Scholar 

  125. Morelli VM, Braekkan SK, Hansen JB. Role of microRNAs in Venous Thromboembolism. Int J Mole Sci. 2020;21(7).

  126. Hembrom AA, Srivastava S, Garg I, Kumar B. MicroRNAs in venous thrombo-embolism. Clinica chimica acta; Int J Clin Chem. 2020;504:66–72.

Download references

Funding

No specific financial support was used for the preparation of this article.

Author information

Authors and Affiliations

Authors

Contributions

IP and SN contributed to idea conception. SN and CS participated in writing the manuscript. RT, JP, EF, and IP contributed critical revision of the article. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Iván Palomo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarrete, S., Solar, C., Tapia, R. et al. Pathophysiology of deep vein thrombosis. Clin Exp Med 23, 645–654 (2023). https://doi.org/10.1007/s10238-022-00829-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-022-00829-w

Keywords

Navigation