Skip to main content
Log in

Assessment of single-difference and track-to-track ambiguity resolution in LEO precise orbit determination

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Single-difference (SD) ambiguity resolution (AR) and track-to-track (T2T) AR are two typical AR methods in precise orbit determination (POD) for Low Earth Orbit (LEO) satellites, which could improve the accuracy of orbits greatly. In this study, SD AR and T2T AR methods are introduced and analyzed. The performance of these two methods is assessed by three months of GPS observations from the Gravity Recovery and Climate Experiment Follow On (GRACE-FO) twin satellites. Results show that T2T AR is highly dependent on the stability of receiver hardware delays, while SD AR requires Fractional Cycle Bias (FCB) or Integer Recovery Clock (IRC) products. We find that these two methods have comparable performance in Reduced Dynamic Precise Orbit Determination (RDPOD), while SD AR slightly outperforms T2T AR in Kinematic Precise Orbit Determination (KPOD). We also find that SD AR has a higher AR success rate than T2T AR. Therefore, we recommend SD AR as the top choice in LEO orbit determination, and T2T AR can be a good alternative when FCB or IRC products are not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The CODE precise orbit and clock products can be found from the Web site of IGS data center of Wuhan University via ftp://igs.gnsswhu.cn/pub/gnss/products/mgex/. The GRACE-FO data are provided by JPL via ftp://rz-vm152.gfz-potsdam.de/. The SLR tracking data are obtained from ftp://cddis.gsfc.nasa.gov/pub/slr/data/, and the F10.7 data and geomagnetic data are from ftp://ftp.swpc.noaa.gov/.

References

  • Arnold D, Schaer S, Villiger A, Dach R, Jäggi A (2019) Single-receiver ambiguity fixing for GPS-based precise orbit determination of low Earth orbiters using CODE’s new clock and phase bias products. Geophys Res Abstr 21:1

    Google Scholar 

  • Berger C, Biancale R, Ill M, Barlier F (1998) Improvement of the empirical thermospheric model DTM: DTM94 - a comparative review of various temporal variations and prospects in space geodesy applications. J Geodesy 72(3):161–178

    Article  Google Scholar 

  • Blewitt G (1989) Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2,000 km. J Geophys Res 94(B8):10187–10203

    Article  Google Scholar 

  • Chen H, Jiang W, Ge M, Wickert J, Schuh H (2014) An enhanced strategy for GNSS data processing of massive networks. J Geodesy 88:857–867

    Article  Google Scholar 

  • Dong D, Bock Y (1989) Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res 94(B4):3949–3966

    Article  Google Scholar 

  • Ge M, Gendt G, Dick G, Zhang F, Rothacher M (2006) A new data processing strategy for huge GNSS global networks. J Geodesy 80(4):199–203

    Article  Google Scholar 

  • Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geodesy 82:389–399

    Article  Google Scholar 

  • Guo J, Kong Q, Qin J et al (2013) On precise orbit determination of HY-2 with space geodetic techniques. Acta Geophys 61(3):752–772

    Article  Google Scholar 

  • Guo X, Geng J, Chen X et al (2020) Enhanced orbit determination for formation-flying satellites through integrated single- and double-difference GPS ambiguity resolution. GPS Solut 24(1):14

    Article  Google Scholar 

  • Jäggi A, Dahle C, Arnold D, Bock H, Meyer U, Beutler G, van den IJssel J. (2016) Swarm kinematic orbits and gravity fields from 18 months of GPS data. Adv Space Res 57(1):218–233

    Article  Google Scholar 

  • Laurichesse D, Mercier F, Berthias J, Broca P, Cerri L (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and Its application to PPP and satellite precise orbit determination. Navigation 56(2):135–149

    Article  Google Scholar 

  • Li J, Zhang S, Zou X, Jiang W (2010) Precise orbit determination for GRACE with zero-difference kinematic method. Chin Sci Bull 55(07):600–606

    Article  Google Scholar 

  • Li X, Zhang X, Li P (2012) PPP for rapid precise positioning and orbit determination with zero-difference integer ambiguity fixing. Chin J Geophys Chin Ed 55(3):833–840

    Google Scholar 

  • Li P, Zhang X, Ren X, Zuo X, Pan Y (2016) Generating GPS satellite fractional cycle bias for ambiguity-fixed precise point positioning. GPS Solut 20(4):771–782

    Article  Google Scholar 

  • Li X, Wu J, Zhang K, Li X, Xiong Y, Zhang Q (2019) Real-time kinematic precise orbit determination for LEO Satellites using zero-differenced ambiguity resolution. Remote Sens 11:2815

    Article  Google Scholar 

  • Liu Y, Ge M, Shi C, Lou Y, Jens W, Harald S (2015) Improving GLONASS precise orbit determination through data connection. Sensors 15(12):30104–30114

    Article  Google Scholar 

  • Loyer S, Perosanz F, Mercier F, Capdeville H, Marty JC (2012) Zero-difference GPS ambiguity resolution at CNES-CLS IGS analysis center. J Geodesy 86(11):991

    Article  Google Scholar 

  • Lu C, Zhang Q, Zhang K, Zhu Y, Zhang W (2019) Improving LEO precise orbit determination with BDS PCV calibration. GPS Solut 23(4):1–13

    Article  Google Scholar 

  • Malys S, Jensen PA (1990) Geodetic point positioning with GPS carrier beat phase data from the CASA UNO experiment. Geophys Res Lett 17(5):651–654

    Article  Google Scholar 

  • Melbourne W (1985) The case for ranging in GPS-based geodetic systems. First International Symposium on Precise Positioning with the Global Positioning System, Rockville

    Google Scholar 

  • Milani A, Nobili AM, Farinella P (1987) Non-gravitational perturbations and satellite geodesy. Adam Hilger, Bristol

    Google Scholar 

  • Montenbruck O, Hackel S, Ijssel J, Arnold D (2018a) Reduced dynamic and kinematic precise orbit determination for the Swarm mission from 4 years of GPS tracking. GPS Solut 22(3):79

    Article  Google Scholar 

  • Montenbruck O, Hackel S, Jaggi A (2018b) Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations. J Geodesy 92(7):711–726

    Article  Google Scholar 

  • Montenbruck O, André H, Langley R, Siemes C (2019) CASSIOPE orbit and attitude determination using commercial off-the-shelf GPS receivers. GPS Solut 23(4):1–12

    Article  Google Scholar 

  • Pearlman M, Degnan J, Bosworth J (2002) The international laser ranging service. Adv Space Res 30(2):135–143

    Article  Google Scholar 

  • Renga A, Causa F, Tancredi U, Grassi M (2018) Accurate ionospheric delay model for real-time GPS-based positioning of LEO satellites using horizontal VTEC gradient estimation. GPS Solut 22(2):46

    Article  Google Scholar 

  • Hatch Ron (1982) The synergism of GPS code and carrier measurements. Proceedings of the third international symposium on satellite Doppler positioning at physical sciences laboratory of New Mexico State University, Feb. 8–12, Vol 2, pp 1213–1231

  • Svehla D (2018) Track-to-track ambiguity resolution for zero-differences—integer phase clocks. Springer theses (recognizing outstanding Ph.D. research): Geometrical theory of satellite orbits and gravity field, Springer, Cham

  • Teunissen P (1995) The least-squares ambiguity decorrelation adjustment a method for fast GPS integer ambiguity estimation. J Geodesy 70:65–82

    Article  Google Scholar 

  • Wermuth M, Montenbruck O, van Helleputte T (2010) GPS high precision orbit determination software tools (GHOST). In: 4th International conference on astrodynamics tools and techniques, 3–6, May 2010, Madrid

  • Won C, Jeong L (2015) An effective range ambiguity resolution for LEO satellite with unknown phase deviation. Ice Trans Commun 99(2):533–541

    Google Scholar 

  • Wu S, Yunck T, Thornton C (1988) Reduced-dynamic technique for precise orbit determination of low earth satellites. J Guid Control Dyn 14(1):2143–2153

    Google Scholar 

  • Wübbena G (1985) Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. Rockville: first international symposium on precise positioning with the global positioning system, Rockville, US, pp 403–412

  • Yuan L, Jin S, Hoque M (2020) Estimation of LEO-GPS receiver differential code bias based on inequality constrained least square and multi-layer mapping function. GPS Solut 24(2):1–12

    Google Scholar 

  • Yunck T, Wu S, Wu J, Thornton C (1990) Precise tracking of remote sensing satellites with the global positioning system. IEEE Trans Geosci Remote Sens 28(1):108–116

    Article  Google Scholar 

  • Yunck T, Bertiger W, Wu S et al (1994) First assessment of GPS-based reduced dynamic orbit determination on TOPEX/Poseidon. Geophys Res Lett 21(7):541–544

    Article  Google Scholar 

  • Zhang X, Li P, Guo F (2013a) Ambiguity resolution in precise point positioning with hourly data for global single receiver. Adv Space Res 51(1):153–161

    Article  Google Scholar 

  • Zhang X, Li P, Zuo X (2013b) Kinematic precise orbit determination based on ambiguity-fixed PPP. Geomat Info Sci Wuhan Univ 38(9):1009–1013

    Google Scholar 

  • Zhou X, Jiang W, Chen H, Li Z, Liu X (2019) Improving the GRACE kinematic precise orbit determination through modified clock estimating. Sensors 19(19):4347

    Article  Google Scholar 

  • Zumberge J, Heflin M, Jefferson D et al (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res Solid Earth 102(B3):5005–5017

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to IGS, CODE, and ILRS for providing GNSS data, precise products, and SLR data. Thanks to JPL and GFZ for providing GRACE-FO data. Thanks to SWPC/NOAA for the F10.7 data and geomagnetic data. This research was funded by the National Natural Science Foundation of China (No. 41704030), Natural Science Innovation Group Foundation of China (No. 41721003), and National Science Fund for Distinguished Young Scholars (No. 41525014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Chen, H., Fan, W. et al. Assessment of single-difference and track-to-track ambiguity resolution in LEO precise orbit determination. GPS Solut 25, 62 (2021). https://doi.org/10.1007/s10291-021-01103-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-021-01103-4

Keywords

Navigation