Skip to main content
Log in

Reduced dynamic and kinematic precise orbit determination for the Swarm mission from 4 years of GPS tracking

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Precise science orbits for the first 4 years of the Swarm mission have been generated from onboard GPS measurements in a systematic reprocessing using refined models and processing techniques. Key enhancements relate to the introduction of macro-models for a more elaborate non-gravitational force modeling (solar radiation pressure, atmospheric drag and lift, earth albedo), as well as carrier phase ambiguity fixing. Validation using satellite laser ranging demonstrates a 30% improvement in the precision of the reduced dynamic orbits with resulting errors at the 0.5–1 cm level (1D RMS). A notable performance improvement is likewise achieved for the kinematic orbits, which benefit most from the ambiguity fixing and show a 50% error reduction in terms of SLR residuals while differences with respect to reduced dynamic ephemerides amount to only 1.7 cm (median of daily 3D RMS). Compared to the past kinematic science orbits based on float-ambiguity estimates, the new kinematic position solutions exhibit a factor of reduction of two to three in Allan deviation at time scales of 1000s and higher, and promise an improved recovery of low-degree and -order gravity field coefficients in Swarm gravity field analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allan DW (1987) Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators. IEEE Trans Ultrason Ferroelectr Freq Control 34(6):647–654

    Article  Google Scholar 

  • Arnold D, Montenbruck O, Hackel S, Sosnica K (2018) Satellite laser ranging to low Earth orbiters: orbit and network validation. J Geodesy. https://doi.org/10.1007/s00190-017-1090-2

    Google Scholar 

  • Bock H, Dach R, Jäggi A, Beutler G (2009) High-rate GPS clock corrections from CODE: support of 1 Hz applications. J Geodesy 83(11):1083–1094. https://doi.org/10.1007/s00190-009-0326-1

    Article  Google Scholar 

  • Cerri L, Berthias J, Bertiger W, Haines B, Lemoine F, Mercier F, Ries J, Willis P, Zelensky N, Ziebart M (2010) Precision orbit determination standards for the Jason series of altimeter missions. Mar Geodesy 33(S1):379–418. https://doi.org/10.1080/01490419.2010.488966

    Article  Google Scholar 

  • da Encarnação JT, Arnold D, Bezděk A, Dahle C, Doornbos E, IJssel J, Jäggi A, Mayer‑Gürr T, Sebera J, Visser P, Zehentner N (2016) Gravity field models derived from Swarm GPS data. Earth Planets Space 68(1):127. https://doi.org/10.1186/s40623-016-0499-9

    Article  Google Scholar 

  • Dach R, Schaer S, Arnold D, Prange L, Sidorov D, Susnik A, Villiger A, Jaeggi A (2017). CODE final product series for the IGS. Astronomical Institute, University of Bern, Bern. http://www.aiub.unibe.ch/download/CODE. https://doi.org/10.7892/boris.75876.2

  • Dahle C, Arnold D, Jäggi A (2017) Impact of tracking loop settings of the Swarm GPS receiver on gravity field recovery. Adv Space Res 59(12):2843–2854. https://doi.org/10.1016/j.asr.2017.03.003

    Article  Google Scholar 

  • Doornbos E (2012) Thermospheric density and wind determination from satellite dynamics. Springer, Heidelberg

    Book  Google Scholar 

  • Friis-Christensen E, Lühr H, Knudsen D, Haagmans R (2008) Swarm—an Earth observation mission investigating geospace. Adv Space Res 41(1):210–216. https://doi.org/10.1016/j.asr.2006.10.008

    Article  Google Scholar 

  • Hackel S, Montenbruck O, Steigenberger P, Balss U, Gisinger C, Eineder M (2017) Model improvements and validation of TerraSAR-X precise orbit determination. J Geodesy 91(5):547–562

    Article  Google Scholar 

  • Jäggi A, Beutler G, Prange L, Dach R, Mervart L (2009a) Assessment of GPS-only observables for gravity field recovery from GRACE. In: Sideris MG (eds) Observing our changing Earth. Springer, Berlin, pp 113–123

    Google Scholar 

  • Jäggi A, Dach R, Montenbruck O, Hugentobler U, Bock H, Beutler G (2009b) Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. J Geodesy 83(12):1145–1162. https://doi.org/10.1007/s00190-009-0333-2

    Article  Google Scholar 

  • Jäggi A, Dahle C, Arnold D, Bock H, Meyer U, Beutler G, van den IJssel J (2016) Swarm kinematic orbits and gravity fields from 18 months of GPS data. Adv Space Res 57(1):218–233

    Article  Google Scholar 

  • Johnston G, Riddell A, Hausler G (2017) The international GNSS service. In: Teunissen P, Montenbruck O (eds) Springer handbook of global navigation satellite systems. Springer, Berlin, pp 967–982

    Chapter  Google Scholar 

  • Knocke PC, Ries JC, Tapley BD (1988) Earth radiation pressure effects on satellites. In: AIAA/AAS astrodynamics conference, pp 577–587

  • Laurichesse D, Mercier F, Berthias JP, Broca P, Cerri L (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation 56(2):135–149. https://doi.org/10.1002/j.2161-4296.2009.tb01750.x

    Article  Google Scholar 

  • Leick A, Rapoport L, Tatarnikov D (2015). GPS satellite surveying. Wiley, Hoboken

    Book  Google Scholar 

  • Loyer S, Perosanz F, Mercier F, Capdeville H, Marty JC (2012) Zero-difference GPS ambiguity resolution at CNES-CLS IGS analysis center. J Geodesy 86(11):991. https://doi.org/10.1007/s00190-012-0559-2

    Article  Google Scholar 

  • Montenbruck O (2003) Kinematic GPS positioning of LEO satellites using ionosphere-free single frequency measurements. Aerosp Sci Technol 7(5):396–405. https://doi.org/10.1016/S1270-9638(03)00034-8

    Article  Google Scholar 

  • Montenbruck O, Hackel S, Jäggi A (2017) Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations. J Geodesy. https://doi.org/10.1007/s00190-017-1090-2

    Google Scholar 

  • Olsen N, Finlay CC, Kotsiaros S, Tøffner-Clausen L (2016) A model of Earth’s magnetic field derived from 2 years of Swarm satellite constellation data. Earth Planets Space 68(1):124. https://doi.org/10.1186/s40623-016-0488-z

    Article  Google Scholar 

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143. https://doi.org/10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  • Peter H, Jäggi A, Fernández J, Escobar D, Ayuga F, Arnold D, Wermuth M, Hackel S, Otten M, Simons W, Visser P, Hugentobler U, Féménias P (2017) Sentinel-1A—first precise orbit determination results. Adv Space Res 60(5):879–892. https://doi.org/10.1016/j.asr.2017.05.034

    Article  Google Scholar 

  • Picone JM, Hedin AE, Drob DP, Aikin AC (2002) NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res. https://doi.org/10.1029/2002JA009430

    Google Scholar 

  • Riley WR (2008) Handbook of frequency stability analysis, NIST Special Publication 1065. National Institute of Standards and Technology, Boulder,

    Google Scholar 

  • Sieg D, Diekmann F (2016) Options for the further orbit evolution of the Swarm mission. In: Proceedings of living planet symposium, SP-740, p 278

  • Siemes C, da Encarnação JDT, Doornbos E, van den IJssel J, Kraus J, Pereštý R, Grunwaldt L, Apelbaum G, Flury J, Olsen PEH (2016) Swarm accelerometer data processing from raw accelerations to thermospheric neutral densities. Earth Planets Space 68(1):92. https://doi.org/10.1186/s40623-016-0474-5

    Article  Google Scholar 

  • Tapley B, Schutz B, Born GH (2004) Statistical orbit determination. Academic Press, London

    Google Scholar 

  • van den IJssel J, Encarnação J, Doornbos E, Visser P (2015) Precise science orbits for the Swarm satellite constellation. Adv Space Res 56(6):1042–1055

    Article  Google Scholar 

  • van den IJssel J, Forte B, Montenbruck O (2016) Impact of Swarm GPS receiver updates on POD performance. Earth Planets Space 68(1):85

    Article  Google Scholar 

  • Wermuth M, Montenbruck O, van Helleputte T (2010) GPS high precision orbit determination software tools (GHOST). In: 4th International conference on astrodynamics tools and techniques, 3–6 May 2010, Madrid

  • Wettergren J, Bonnedal M, Ingvarson P, Wästberg B (2009) Antenna for precise orbit determination. Acta Astronaut 65(11–12):1765–1771

    Article  Google Scholar 

  • Zangerl F, Griesauer F, Sust M, Montenbruck O, Buchert B, Garcia A (2014) SWARM GPS precise orbit determination receiver initial in-orbit performance evaluation. In: Proceedings of ION GNSS + 2014, pp 1459–1468

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Montenbruck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montenbruck, O., Hackel, S., van den Ijssel, J. et al. Reduced dynamic and kinematic precise orbit determination for the Swarm mission from 4 years of GPS tracking. GPS Solut 22, 79 (2018). https://doi.org/10.1007/s10291-018-0746-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-018-0746-6

Keywords

Navigation