Skip to main content
Log in

Enhanced orbit determination for formation-flying satellites through integrated single- and double-difference GPS ambiguity resolution

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The formation-flying technique is a fundamental concept for earth observing satellite missions, which usually require both absolute and relative orbit accuracies. Their precise orbit determinations are usually exclusively performed based on spaceborne GNSS data, where integer ambiguity resolution (IAR) plays a crucial role in achieving the best orbit accuracy. However, it is found that single-receiver IAR by resolving the single-difference (SD) ambiguities between GNSS satellites at each individual formation-flying satellite cannot achieve the same relative orbit accuracy that is attained by double-difference (DD) IAR between formation-flying satellites. To unravel this problem, 1 year of GPS data collected by the Gravity Recovery and Climate Experiment (GRACE) mission are used and four types of orbits are derived for comparison: (1) orbits where no ambiguities are fixed; (2) orbits where SD IAR is performed for both satellites; (3) orbits where only DD ambiguities between the twin GRACE satellites are resolved; (4) and orbits where SD IAR is carried out on only GRACE A while DD IAR is further accomplished between the twin satellites, namely the integrated SD IAR and DD IAR solutions. They are then evaluated through comparison to the reduced-dynamic orbit generated at the Jet Propulsion Laboratory, residual analysis of satellite laser ranging (SLR), and K-Band ranging (KBR) measurements. As expected, the integrated SD IAR and DD IAR solutions can achieve the highest absolute and relative orbit accuracies simultaneously. Specifically, SLR residuals in case of the integrated IAR are reduced by at least 25% for the kinematic orbit, when compared to the case of DD IAR. KBR residuals in case of the integrated IAR are reduced by 35 and 16% for the dynamic and kinematic orbit, respectively, when compared to those of SD IAR. Importantly, we find that errors in GPS clocks and/or narrow-lane fractional-cycle biases are in part responsible for the deteriorated relative accuracy of SD IAR achieved orbits. Therefore, we suggest that the integrated SD IAR and DD IAR scheme should be implemented for the best orbit solutions of formation-flying missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allende-Alba G, Montenbruck O (2016) Robust and precise baseline determination of distributed spacecraft in LEO. Adv Space Res 57(1):46–63. https://doi.org/10.1016/j.asr.2015.09.034

    Article  Google Scholar 

  • Allende-Alba G, Montenbruck O, Jäggi A, Arnold D, Zangerl F (2017) Reduced-dynamic and kinematic baseline determination for the swarm mission. GPS Solutions 21(3):1275–1284. https://doi.org/10.1007/s10291-017-0611-z

    Article  Google Scholar 

  • Allende-Alba G, Montenbruck O, Hackel S, Tossaint M (2018) Relative positioning of formation-flying spacecraft using single-receiver GPS carrier phase ambiguity fixing. GPS Solutions 22(3):68. https://doi.org/10.1007/s10291-018-0734-x

    Article  Google Scholar 

  • Arnold D, Montenbruck O, Hackel S, Sośnica K (2018a) Satellite laser ranging to low earth orbiters: orbit and network validation. J Geodesy. https://doi.org/10.1007/s00190-018-1140-4

    Article  Google Scholar 

  • Arnold D, Schaer S, Villiger A, Dach R, Jäggi A (2018b) Undifference ambiguity resolution for GPS-based precise orbit determination of low Earth orbiters using the new CODE clock and phase bias products. International GNSS Service Workshop 2018, Wuhan, China, 29 October–2 November, 2018

  • Berger C, Biancale R, Ill M, Barlier F (1998) Improvement of the empirical thermospheric model DTM: DTM94—a comparative review of various temporal variations and prospects in space geodesy applications. J Geodesy 72(3):161–178. https://doi.org/10.1007/s001900050158

    Article  Google Scholar 

  • Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss JP (2010) Single receiver phase ambiguity resolution with GPS data. J Geodesy 84(5):327–337. https://doi.org/10.1007/s00190-010-0371-9

    Article  Google Scholar 

  • Bettadpur S (2012) GRACE product specification document. CSR-GR-03-02, v4.6. Center for Space Research, University of Texas at Austin

  • Blewitt G (1989) Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km. J Geophys Res Solid Earth 94(B8):10187–10203. https://doi.org/10.1029/Jb094ib08p10187

    Article  Google Scholar 

  • Bock H, Dach R, Jäggi A, Beutler G (2009) High-rate GPS clock corrections from CODE: support of 1 Hz applications. J Geodesy 83(11):1083–1094. https://doi.org/10.1007/s00190-009-0326-1

    Article  Google Scholar 

  • Case K, Kruizinga G, Wu S-C (2010) GRACE level 1B data product user handbook. JPL D-22027, v1.3. Jet Propulsion Laboratory

  • Collins P (2008) Isolating and estimating undifferenced GPS integer ambiguities. In: Proceedings of ION NTM 2008, Institute of Navigation, San Diego, California, USA, 28–30 January, pp 720–732

  • Desai SD (2002) Observing the pole tide with satellite altimetry. J Geophys Res 107(C11):7-1-7-13. https://doi.org/10.1029/2001jc001224

    Article  Google Scholar 

  • Dong DN, Bock Y (1989) Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res Solid Earth 94(B4):3949–3966. https://doi.org/10.1029/Jb094ib04p03949

    Article  Google Scholar 

  • Dunn C et al (2003) Instrument of GRACE. GPS World 14(2):17–28

    Google Scholar 

  • Flechtner F, Dobslaw H, Fagiolini E (2015) AOD1B product description document for product release 05. GR-GFZ-AOD-0001. GFZ German Research Centre for Geosciences

  • Folkner WM, Williams JG, Boggs DH (2009) The planetary and lunar ephemeris DE 421. Jet Propulsion Laboratory, California Institute of Technology

  • Förste C, Bruinsma SL, Abrikosov O, Lemoine J-M, Marty JC, Flechtner F, Balmino G, Barthelmes F, Biancale R (2014) EIGEN-6C4 the latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. Geophysical Research Abstracts, EGU2014-3707. EGU General Assembly, Vienna, Austria, 27 April–2 May, 2014

  • Friis-Christensen E, Lühr H, Knudsen D, Haagmans R (2008) Swarm—an earth observation mission investigating geospace. Adv Space Res 41(1):210–216. https://doi.org/10.1016/j.asr.2006.10.008

    Article  Google Scholar 

  • Ge M, Gendt G, Dick G, Zhang FP (2005) Improving carrier-phase ambiguity resolution in global GPS network solutions. J Geodesy 79(1–3):103–110. https://doi.org/10.1007/s00190-005-0447-0

    Article  Google Scholar 

  • Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geodesy 82(7):389–399. https://doi.org/10.1007/s00190-007-0187-4

    Article  Google Scholar 

  • Geng J, Bock Y (2016) GLONASS fractional-cycle bias estimation across inhomogeneous receivers for PPP ambiguity resolution. J Geodesy 90(4):379–396. https://doi.org/10.1007/s00190-015-0879-0

    Article  Google Scholar 

  • Geng J, Teferle FN, Meng X, Dodson AH (2011) Towards PPP-RTK: ambiguity resolution in real-time precise point positioning. Adv Space Res 47(10):1664–1673. https://doi.org/10.1016/j.asr.2010.03.030

    Article  Google Scholar 

  • Geng J, Chen X, Pan Y, Zhao Q (2019) A modified phase clock/bias model to improve PPP ambiguity resolution at Wuhan University. J Geodesy. https://doi.org/10.1007/s00190-019-01301-6

    Article  Google Scholar 

  • Gu DF, Ju B, Liu JH, Tu J (2017) Enhanced GPS-based GRACE baseline determination by using a new strategy for ambiguity resolution and relative phase center variation corrections. Acta Astronaut 138:176–184. https://doi.org/10.1016/j.actaastro.2017.05.022

    Article  Google Scholar 

  • Guo X, Zhao Q, Ditmar P, Sun Y, Liu J (2018) Improvements in the monthly gravity field solutions through modeling the colored noise in the GRACE data. J Geophys Res Solid Earth 123(8):7040–7054. https://doi.org/10.1029/2018JB015601

    Article  Google Scholar 

  • Hatch R (1982) The synergism of GPS Code and carrier measurements. IN: Proceedings of the third international symposium on satellite doppler positioning, Physical Sciences Laboratory of New Mexico State University, 8–12 February, pp 1213–1231

  • Jäggi A, Hugentobler U, Bock H, Beutler G (2007) Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data. Adv Space Res 39(10):1612–1619. https://doi.org/10.1016/j.asr.2007.03.012

    Article  Google Scholar 

  • Jäggi A, Dach R, Montenbruck O, Hugentobler U, Bock H, Beutler G (2009) Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. J Geodesy 83(12):1145–1162. https://doi.org/10.1007/s00190-009-0333-2

    Article  Google Scholar 

  • Kouba J (2009) A guide to using International GNSS Service (IGS) products. ftp://www.igs.org/pub/resource/pubs/UsingIGSProductsVer21.pdf

  • Krieger G, Moreira A, Fiedler H, Hajnsek I, Werner M, Younis M, Zink M (2007) TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Trans Geosci Remote Sens 45(11):3317–3341. https://doi.org/10.1109/tgrs.2007.900693

    Article  Google Scholar 

  • Kroes R, Montenbruck O, Bertiger W, Visser P (2005) Precise GRACE baseline determination using GPS. GPS Solutions 9(1):21–31. https://doi.org/10.1007/s10291-004-0123-5

    Article  Google Scholar 

  • Laurichesse D, Mercier F, Berthias JP, Bijac J (2008) Real time zero-difference ambiguities fixing and absolute RTK. In: Proceedings of ION NTM 2008, Institute of Navigation, San Diego, California, USA, 28–30 January, pp 747–755

  • Laurichesse D, Mercier F, Berthias JP, Broca P, Cerri L (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation 56(2):135–149

    Article  Google Scholar 

  • Li P, Zhang X, Ren X, Zuo X, Pan Y (2015) Generating GPS satellite fractional cycle bias for ambiguity-fixed precise point positioning. GPS Solutions 20(4):771–782. https://doi.org/10.1007/s10291-015-0483-z

    Article  Google Scholar 

  • Liu J, Ge M (2003) PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ J Nat Sci 8(2):603–609

    Article  Google Scholar 

  • Loyer S, Perosanz F, Mercier F, Capdeville H, Marty J-C (2012) Zero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis Center. J Geodesy 86(11):991–1003. https://doi.org/10.1007/s00190-012-0559-2

    Article  Google Scholar 

  • Mao X, Visser PNAM, van den Ijssel J (2017) Impact of GPS antenna phase center and code residual variation maps on orbit and baseline determination of GRACE. Adv Space Res 59(12):2987–3002. https://doi.org/10.1016/j.asr.2017.03.019

    Article  Google Scholar 

  • Marshall JA, Luthcke SB (1994) Modeling radiation forces acting on Topex/Poseidon for precision orbit determination. J Spacecr Rockets 31(1):99–105. https://doi.org/10.2514/3.26408

    Article  Google Scholar 

  • Melbourne WG (1985) The case for ranging in GPS-based geodetic systems. In: Proceedings of the first international symposium on precise positioning with the global positioning system, Rockville, 15–19 April, pp 373–386

  • Mendes VB, Pavlis EC (2004) High-accuracy zenith delay prediction at optical wavelengths. Geophys Res Lett. https://doi.org/10.1029/2004gl020308

    Article  Google Scholar 

  • Mendes VB, Prates G, Pavlis EC, Pavlis DE, Langley RB (2002) Improved mapping functions for atmospheric refraction correction in SLR. Geophys Res Lett 29(10):53-51-53-54. https://doi.org/10.1029/2001gl014394

    Article  Google Scholar 

  • Montenbruck O, Hackel S, Jäggi A (2017) Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations. J Geodesy 92(7):711–726. https://doi.org/10.1007/s00190-017-1090-2

    Article  Google Scholar 

  • Montenbruck O, Hackel S, van den Ijssel J, Arnold D (2018) Reduced dynamic and kinematic precise orbit determination for the swarm mission from 4 years of GPS tracking. GPS Solutions 22:79. https://doi.org/10.1007/s10291-018-0746-6

    Article  Google Scholar 

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143. https://doi.org/10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  • Petit G, Luzum B (2010) IERS Conventions (2010). IERS Technical Note No. 36. Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany. http://www.iers.org/TN36/

  • Priestley KJ, Smith GL, Thomas S, Cooper D, Lee RB, Walikainen D, Hess P, Szewczyk ZP, Wilson R (2011) Radiometric performance of the CERES earth radiation budget climate record sensors on the eos aqua and terra spacecraft through April 2007. J Atmos Ocean Technol 28(1):3–21. https://doi.org/10.1175/2010jtecha1521.1

    Article  Google Scholar 

  • Rieser D, Mayer-Gürr T, Savcenko R, Bosch W, Wünsch J, Dahle C, Flechtner F (2012) The ocean tide model EOT11a in spherical harmonics representation. Institute of Theoretical Geodesy and Satellite Geodesy (ITSG), TU Graz, Austria; Deutsches Geodätisches Forschungsinstitut (DGFI), Munich, Germany; GFZ German Research Centre for Geosciences, Potsdam, Germany. https://www.tugraz.at/fileadmin/user_upload/Institute/IFG/satgeo/pdf/TN_EOT11a.pdf

  • Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J Geodesy 81(12):781–798. https://doi.org/10.1007/s00190-007-0148-y

    Article  Google Scholar 

  • Švehla D, Rothacher M (2005) Kinematic precise orbit determination for gravity field determination. In: Sansò F (ed) A window on the future of geodesy. International Association of Geodesy Symposia, vol 128. Springer. Berlin, Heidelberg, pp 181–188. https://doi.org/10.1007/3-540-27432-4_32

    Chapter  Google Scholar 

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the earth system. Science 305(5683):503–505. https://doi.org/10.1126/science.1099192

    Article  Google Scholar 

  • Wu JT, Wu SC, Hajj G, Bertiger WI, Lichten SM (1993) Effects of antenna orientation on GPS carrier phase. Manuscr Geod 18(2):91–98

    Google Scholar 

  • Wübbena G (1985) Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. In: Proceedings of the first international symposium on precise positioning with the global positioning system, Rockville, 15–18 April, pp 403–412

Download references

Acknowledgements

The work was sponsored by the National ‘863 Program’ of China (Grant No. 2014AA121501), the National Natural Science Foundation of China (Grant Nos. 41674033, 41574030, 41904009). The numerical calculations in this research have been done on the supercomputing system in the Supercomputing Center of Wuhan University. The FCB or phase bias products can be found at ftp://igs.gnsswhu.cn/pub/whu/phasebias/, and open-source PPP-AR software can be obtained from pride.whu.edu.cn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianghui Geng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Geng, J., Chen, X. et al. Enhanced orbit determination for formation-flying satellites through integrated single- and double-difference GPS ambiguity resolution. GPS Solut 24, 14 (2020). https://doi.org/10.1007/s10291-019-0932-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-019-0932-1

Keywords

Navigation