Skip to main content
Log in

Triple-frequency carrier phase precise time and frequency transfer models for BDS-3

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The third-generation BeiDou navigation satellite system (BDS-3) began providing global positioning, navigation and timing service on December 27, 2018. We present three triple-frequency carrier phase (CP) precise time and frequency transfer models using the BDS-3 B1I/B3I/B2a signals, named IF-PPP1, IF-PPP2 and UC-PPP models, respectively. The BDS B1I/B3I dual-frequency ionospheric-free (IF) model is also introduced, known as IF-PPP0 model. The corresponding mathematical and stochastic models are developed. Two stations located at time laboratories and connected to a high-precision atomic clock are utilized to assess the performances of the proposed CP precise time and frequency transfer models. In addition, the number of visible satellites, position dilution of precision, time dilution of precision, estimated positioning errors, zenith tropospheric delay and inter-frequency bias for two stations are also analyzed. The results show that BDS CP precise time and frequency transfer can achieve better performances with increasing number of BDS-3 observations. The proposed models all can be applied for precise time and frequency transfer with the BDS-3 triple-frequency signals, with stability and accuracy identical to the BDS IF-PPP0 solution. The stability of 10,000 s for the proposed BDS CP precise time and frequency models is better than 1.5 × 10−14.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • CSNO (2019) BeiDou navigation satellite system signal in space interface control document—open service signal B1I (Version 3.0). China Satellite Navigation Office, Beijing

    Google Scholar 

  • Defraigne P, Baire Q (2011) Combining GPS and GLONASS for time and frequency transfer. Adv Space Res 47(2):265–275

    Article  Google Scholar 

  • Defraigne P, Aerts W, Pottiaux E (2015) Monitoring of UTC (k)’s using PPP and IGS real-time products. GPS Solut 19(1):165–172

    Article  Google Scholar 

  • Ge Y, Qin W, Cao X, Zhou F, Wang S, Yang X (2018) Consideration of GLONASS inter-frequency code biases in precise point positioning (PPP) international time transfer. Appl Sci 8(8):1254

    Article  Google Scholar 

  • Hopfield HS (1969) Two-quartic tropospheric refractivity profile for correcting satellite data. J Geophys Res 74(18):4487–4499

    Article  Google Scholar 

  • Jiang Z, Petit G (2004) Time transfer with GPS satellites all in view. In: Proceedings Asia-Pacific workshop on time and frequency 2004, p 236

  • Kouba J (2009) A guide to using International GNSS Service (IGS) products. IGS Central Bureau, Jet Propulsion Laboratory, Pasadena, CA, p 34

    Google Scholar 

  • Landskron D, Böhm J (2018) VMF3/GPT3: refined discrete and empirical troposphere mapping functions. J Geod 92(4):349–360

    Article  Google Scholar 

  • Larson KM, Levine L (1999) Carrier-phase time transfer. IEEE Trans Ultrason Ferroelectr Freq Control 46(4):1001–1012

    Article  Google Scholar 

  • Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th edn. Wiley, Hoboken

    Google Scholar 

  • Montenbruck O, Hugentobler U, Dach R, Steigenberger P, Hauschild A (2011) Apparent clock variations of the block IIF-1 (SVN62) GPS satellite. GPS Solut. https://doi.org/10.1007/s10291-011-0232-x

    Article  Google Scholar 

  • Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2013) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17(2):211–222. https://doi.org/10.1007/s10291-012-0272-x

    Article  Google Scholar 

  • Petit G, Jiang Z (2007) GPS all in view time transfer for TAI computation. Metrologia 45(1):35

    Article  Google Scholar 

  • Petit G, Luzum B (2010) IERS conventions (2010). No. IERS-TN-36. Bureau International des Poids et Mesures Sevres (France)

  • Su K, Jin S (2018) Improvement of multi-GNSS precise point positioning performances with real meteorological data. J Navig 71(6):1363–1380

    Article  Google Scholar 

  • Su K, Jin S, Ge Y (2019a) Rapid displacement determination with a stand-alone multi-GNSS receiver: GPS, Beidou, GLONASS, and Galileo. GPS Solut 23(2):54

    Article  Google Scholar 

  • Su K, Jin S, Hoque MM (2019b) Evaluation of ionospheric delay effects on multi-GNSS positioning performance. Remote Sens 11(2):171. https://doi.org/10.3390/rs11020171

    Article  Google Scholar 

  • Tu R, Zhang P, Zhang R, Liu J, Lu X (2018) Modeling and performance analysis of precise time transfer based on BDS triple-frequency un-combined observations. J Geod 93(6):837–847

    Article  Google Scholar 

  • Wang N, Yuan Y, Li Z, Montenbruck O, Tan B (2016) Determination of differential code biases with multi-GNSS observations. J Geod 90(3):209–228

    Article  Google Scholar 

  • Wang K, Khodabandeh A, Teunissen P (2018) Five-frequency Galileo long-baseline ambiguity resolution with multipath mitigation. GPS Solut 22:75

    Article  Google Scholar 

  • Wang C, Zhao Q, Guo J, Liu J, Chen G (2019) The contribution of intersatellite links to BDS-3 orbit determination: Model refinement and comparisons. Navigation 66:83–97

    Article  Google Scholar 

  • Wu JT, Wu SC, Hajj GA, Bertiger WI, Lichten SM (1992) Effects of antenna orientation on GPS carrier phase. Astrodynamics 18:1647–1660 (Astrodynamics 1991)

    Google Scholar 

  • Xiao W, Liu W, Sun G (2016) Modernization milestone: BeiDou M2-S initial signal analysis. GPS Solut 20(1):125–133

    Article  Google Scholar 

  • Xu G, Xu Y (2016) GPS: theory, algorithms and applications, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Yang Y, Li J, Xu J et al (2011) Contribution of the COMPASS satellite navigation system to global PNT users. China Sci Bull 56(26):2813–2819

    Article  Google Scholar 

  • Yao J, Skakun I, Jiang Z, Levine J (2015) A detailed comparison of two continuous GPS carrier-phase time transfer techniques. Metrologia 52(5):666

    Article  Google Scholar 

  • Zaminpardaz S, Teunissen PJ, Nadarajah N (2017) GLONASS CDMA L3 ambiguity resolution and positioning. GPS Solut 21(2):535–549

    Article  Google Scholar 

  • Zhang P, Tu R, Gao Y, Liu N, Zhang R (2019) Improving Galileo’s carrier-phase time transfer based on prior constraint information. J Navig 72(1):121–139

    Article  Google Scholar 

  • Zhao Q, Wang C, Guo J, Wang B, Liu J (2018) Precise orbit and clock determination for BeiDou-3 experimental satellites with yaw attitude analysis. GPS Solut 22(1):4

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (NSFC) Project (Grant No. 41761134092), Jiangsu Province Distinguished Professor Project (Grant No. R2018T20), and Startup Foundation for Introducing Talent of NUIST (Grant No. 2243141801036). We thank the iGMAS for providing the BDS observation data and Wuhan University for providing precise orbit and clock products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, K., Jin, S. Triple-frequency carrier phase precise time and frequency transfer models for BDS-3. GPS Solut 23, 86 (2019). https://doi.org/10.1007/s10291-019-0879-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-019-0879-2

Keywords

Navigation