Skip to main content
Log in

Insight into the Excellent Tribological Performance of Highly Oriented Poly(phenylene sulfide)

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Achieving low friction and wear of poly(phenylene sulfide) (PPS) without using fillers or blending is a challenging task, but one of considerable practical importance. Here we describe how neat PPS with high tribological performance is achieved by manipulating processing parameters (pressure, flow and temperature). The key to achieving high tribological performance is comparatively high molecular chain orientation, realized in neat PPS, at high shear rates and low pressure. The friction coefficient and wear rate are as low as ∼0.3 and ∼10−6 mm3·N−1·m−1, respectively, which break the record for neat PPS. These values are even better than those for PPS-based blends and comparable to PPS composites. Further studies show, for the first time, that wear rate decreases exponentially with increasing molecular chain orientation, prompting us to revise the classical Archard’s law by including the effect of molecular chain orientation. These findings open the possibility of using neat PPS in highly demanding tribological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rahate, A. S.; Nemade, K. R.; Waghuley, S. A. Polyphenylene sulfide (PPS): state of the art and applications. Rev. Chem. Eng. 2013, 29, 471–489.

    Article  CAS  Google Scholar 

  2. Lou, F. L.; Xu, Y.; Pang, H.; Chen, Y. H.; Xu, J. Z.; Li, Z. M.; Lu, A. Non-isothermal crystallization kinetics of poly(phenylene sulfide) with low crosslinking levels. Chinese J. Polym. Sci. 2013, 31, 462–470.

    Article  CAS  Google Scholar 

  3. Lenz, R. W.; Handlovits, C. E.; Smith, H. A. Phenylene sulfide polymers. 3. Synthesis of linear polyphenylene sulfide. J. Polym. Sci., Part B: Polym. Phys. 1962, 58, 351–367.

    CAS  Google Scholar 

  4. Shi, Y.; Zhou, S. T.; Heng, Z. G.; Liang, M.; Wu, Y.; Chen, Y.; Zou, H. W. Interlocking structure formed by multiscale carbon fiber-polytetrafluoroethylene fiber hybrid significantly enhances the friction and wear properties of polyphenylene sulfide based composites. Ind. Eng. Chem. Res. 2019, 58, 16541–16551.

    Article  CAS  Google Scholar 

  5. Golchin, A.; Friedrich, K.; Noll, A.; Prakash, B. Influence of counter surface topography on the tribological behavior of carbon-filled PPS composites in water. Tribol. Int. 2015, 88, 209–217.

    Article  CAS  Google Scholar 

  6. Diez-Pascual, A. M.; Diez-Vicente, A. L. High-eerformncee aminated poly(phenylene sulfide)/ZnO nanocomposites for medical applications. ACS Appl. Mater. Interfaces 2014, 6, 10132–10145.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, Z.; Li, T.; Yang, Y.; Liu, X.; Lv, R. Mechanical and tribological properties of PA/PPS blends. Wear 2004, 257, 696–707.

    Article  CAS  Google Scholar 

  8. Kim, S. S.; Shin, M. W.; Jang, H. The wear mechanism of a polyphenylene sulfide (PPS) composite mixed with ethylene butyl acrylate (EBA). Tribol. Lett. 2012, 47, 165–173.

    Article  CAS  Google Scholar 

  9. Luo, W.; Liu, Q.; Li, Y.; Zhou, S. T.; Zou, H. W.; Liang, M. Enhanced mechanical and tribological properties in polyphenylene sulfide/polytetrafluoroethylene composites reinforced by short carbon fiber. Compos. B Eng. 2016, 91, 579–588.

    Article  CAS  Google Scholar 

  10. Friedrich, K. Polymer composites for tribological applications. Adv. Ind. Eng. Polym. Res. 2018, 1, 3–39.

    Google Scholar 

  11. Chen, Y. H.; Zhong, G. J.; Wang, Y.; Li, Z. M.; Li, L. Unusual tuning of mechanical properties of isotactic polypropylene using counteraction of shear flow and β-nucleating agent on β-form nucleation. Macromolecules 2009, 42, 4343–4348.

    Article  CAS  Google Scholar 

  12. Xu, H.; Zhong, G. J.; Fu, Q.; Lei, J.; Jiang, W.; Hsiao, B. S.; Li, Z. M. Formation of shish-kebabs in injection-molded poly(L-lactic acid) by application of an intense flow field. ACS Appl. Mater. Interfaces 2012, 4, 6774–6784.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, X.; Sun, S.; Ning, N.; Yan, S.; Wu, X.; Lu, Y.; Zhang, L. Visualization and quantification of the microstructure evolution of isoprene rubber during uniaxial stretching using AFM nanomechanical mapping. Macromolecules 2020, 53, 3082–3089.

    Article  CAS  Google Scholar 

  14. Wang, Z. H.; Chen, X.; Yang, H. X.; Zhao, J.; Yang, S. Y. The in-plane orientation and thermal mechanical properties of the chemically imidized polyimide films. Chinese J. Polym. Sci. 2019, 37, 268–278.

    Article  CAS  Google Scholar 

  15. Liley, M.; Gourdon, D.; Stamou, D.; Meseth, U.; Fischer, T. M.; Lautz, C.; Stahlberg, H.; Vogel, H.; Burnham, N. A.; Duschl, C. Friction anisotropy and asymmetry of a compliant monolayer induced by a small molecular tilt. Science 1998, 280, 273–275.

    Article  CAS  PubMed  Google Scholar 

  16. Jang, I.; Burris, D. L.; Dickrell, P. L.; Barry, P. R.; Santos, C.; Perry, S. S.; Phillpot, S. R.; Sinnott, S. B.; Sawyer, W. G. Sliding orientation effects on the tribological properties of polytetrafluoroethylene. J. Appl. Phys. 2007, 102, 123509.

    Article  Google Scholar 

  17. Zhang, R. C.; Xu, Y.; Lu, A.; Cheng, K.; Huang, Y.; Li, Z. M. Shear-induced crystallization of poly(phenylene sulfide). Polymer 2008, 49, 2604–2613.

    Article  CAS  Google Scholar 

  18. Frank, F. C.; Keller, A.; Mackley, M. R. Polymer chain extension produced by impinging jets and its effect on polyethylene solution. Polymer 1971, 12, 467–473.

    Article  CAS  Google Scholar 

  19. Keller, A.; Kolnaar, J. W. H. Chain extension and orientation: fundamentals and relevance to processing and products. In Orientational Phenomena in Polymers; Steinkopff: 1993; pp. 81–102.

  20. Ma, G. Q.; Li, D.; Sheng, J. Shear-induced crystallization in phase-separated blends of isotactic polypropylene with ethylenepropylene-diene terpolymer. Chinese J. Polym. Sci. 2015, 333, 1538–1549.

    Article  Google Scholar 

  21. Cui, K.; Ma, Z.; Tian, N.; Su, F.; Liu, D.; Li, L. Multiscale and multistep ordering of flow-induced nucleation of polymers. Chem. Rev. 2018, 118, 1840–1886.

    Article  CAS  PubMed  Google Scholar 

  22. Nazari, B.; Rhoades, A. M.; Schaake, R. P.; Colby, R. H. Flow-induced crystallization of PEEK: isothermal crystallization kinetics and lifetime of flow-induced precursors during isothermal annealing. ACS Macro Lett. 2016, 5, 849–853.

    Article  CAS  Google Scholar 

  23. Seo, J.; Gohn, A. M.; Schaake, R. P.; Parisi, D.; Rhoades, A. M.; Colby, R. H. Shear flow-induced crystallization of poly(ether ether ketone). Macromolecules 2020, 53, 3472–3481.

    Article  CAS  Google Scholar 

  24. Yang, S. G.; Chen, Y. H.; Deng, B. W.; Lei, J.; Li, L.; Li, Z. M. Window of pressure and flow to produce β-crystals in isotactic polypropylene mixed with β-nucleating agent. Macromolecules 2017, 50, 4807–4816.

    Article  CAS  Google Scholar 

  25. Ru, J. F.; Yang, S. G.; Zhou, D.; Yin, H. M.; Lei, J.; Li, Z. M. Dominant β-form of poly(L-lactic acid) obtained directly from melt under shear and pressure fields. Macromolecules 2016, 49, 3826–3837.

    Article  CAS  Google Scholar 

  26. Yang, S. G.; Lei, J.; Zhong, G. J.; Xu, J. Z.; Li, Z. M. Role of lamellar thickening in thick lamellae formation in isotactic polypropylene when crystallizing under flow and pressure. Polymer 2019, 179, 121641.

    Article  CAS  Google Scholar 

  27. Zhang, X. X.; Yang, S. G.; Zhong, G. J.; Lei, J.; Liu, D.; Sun, G. A.; Xu, J. Z.; Li, Z. M. Rapid melt crystallization of bisphenol-A polycarbonate jointly induced by pressure and flow. Macromolecules 2021, DOI: https://doi.org/10.1021/acs.macromol.0c02208.

  28. Zeng, J.; Bian, F.; Wang, J.; Li, X.; Wang, Y.; Tian, F.; Zhou, P. Performance on absolute scattering intensity calibration and protein molecular weight determination at BL16B1, a dedicated SAXS beamline at SSRF. J. Synchrotron Radiat. 2017, 24, 509–520.

    Article  CAS  PubMed  Google Scholar 

  29. Hu, T.; Hua, W. Q.; Zhong, G. J.; Wang, Y. D.; Gao, Y. T.; Hong, C. X.; Li, Z. M.; Bian, F. G.; Xiao, T. Q. Nondestructive and quantitative characterization of bulk injection-molded polylactide using SAXS microtomography. Macromolecules 2020, 53, 6498–6509.

    Article  CAS  Google Scholar 

  30. Polanyl, M. Das Rontgen-Faserdiagramm. Z. Physik 1921, 7, 149–180.

    Article  Google Scholar 

  31. Pu H. T.; Cheng J. F. Orientation of LDPE crystals from microscale to nanoscale via microlayer or nanolayer coextrusion. Chinese J. Polym. Sci. 2016, 34, 1411–1422.

    Article  Google Scholar 

  32. Hiss, R.; Hobeika, S.; Lynn, C.; Strobl, G. Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers. A comparative study. Macromolecules 1999, 32, 4390–4403.

    Article  CAS  Google Scholar 

  33. Bahadur, S.; Sunkara, C. Effect of transfer film structure, composition and bonding on the tribological behavior of polyphenylene sulfide filled with nano particles of TiO2, ZnO, CuO and SiC. Wear 2005, 258, 1411–1421.

    Article  CAS  Google Scholar 

  34. Bahadur, S. The development of transfer layers and their role in polymer tribology. Wear 2000, 245, 92–99.

    Article  CAS  Google Scholar 

  35. Haidar, D. R.; Ye, J.; Moore, A. C.; Burris, D. L. Assessing quantitative metrics of transfer film quality as indicators of polymer wear performance. Wear 2017, 380–381, 78–85.

    Article  Google Scholar 

  36. Xu, Y.; Guo, Y.; Li, G.; Zhang, L.; Zhao, F.; Guo, X.; Dmitriev, A. I.; Zhang, G. Role of hydrolysable nanoparticles on tribological performance of PPS-steel sliding pair lubricated with sea water. Tribol. Int. 2018, 127, 147–156.

    Article  CAS  Google Scholar 

  37. Jain, A.; Somberg, J.; Emami, N. Development and characterization of multi-scale carbon reinforced PPS composites for tribological applications. Lubricants 2019, 7, 34.

    Article  Google Scholar 

  38. Duan, Y.; Cong, P.; Liu, X.; Li, T. Friction and wear of polyphenylene sulfide (PPS), polyethersulfone (PES) and polysulfone (PSU) under different cooling conditions. Macromol. Sci., Part B: Phys. 2009, 48, 604–616.

    Article  CAS  Google Scholar 

  39. Zhou, S.; Zhang, Q.; Wu, C.; Huang, J. Effect of carbon fiber reinforcement on the mechanical and tribological properties of polyamide6/polyphenylene sulfide composites. Mater. Des. 2019, 44, 493–499.

    Article  Google Scholar 

  40. Chen, Z.; Liu, X.; Li, T.; Lü, R. Mechanical and tribological properties of PA66/PPS blend. II. Filled with PTFE. J. Appl. Polym. Sci. 2006, 101, 969–977.

    Article  CAS  Google Scholar 

  41. Qi, H.; Zhang, L.; Zhang, G.; Wang, T.; Wang, Q. Comparative study of tribochemistry of ultrahigh molecular weight polyethylene, polyphenylene sulfide and polyetherimide in tribo-composites. J. Colloid Interface Sci. 2018, 514, 615–624.

    Article  CAS  PubMed  Google Scholar 

  42. Napolitano, R.; Pirozzi, B.; Salvione, A. Crystal structure of poly(p-phenylene sulfide): a refinement by X-ray measurements and molecular mechanics calculations. Macromolecules 1999, 32, 7682–7687.

    Article  CAS  Google Scholar 

  43. Yang, H.; Liu, D.; Ju, J.; Li, J.; Wang, Z.; Yan, G.; Ji, Y.; Zhang, W.; Sun, G.; Li, L. Chain deformation on the formation of shish nuclei under extension flow: an in situ SANS and SAXS study. Macromolecules 2016, 49, 9080–9088.

    Article  CAS  Google Scholar 

  44. He, Y.; Xu, W. H.; Zhang, H.; Qu, J. P. Constructing bone-mimicking high-performance structured poly(lactic acid) by an elongational flow field and facile annealing process. ACS Appl. Mater. Interfaces 2020, 12, 13411–13420.

    Article  CAS  PubMed  Google Scholar 

  45. Chu, Z.; Liu, L.; Lou, Y.; Zhao, R.; Ma, Z.; Li, Y. Flow-induced crystallization of crosslinked poly(vinylidene fluoride) at elevated temperatures: formation and evolution of the electroactive β-phase. Ind. Eng. Chem. Res. 2020, 59, 4459–4471.

    Article  CAS  Google Scholar 

  46. Angelloz, C.; Fulchiron, R.; Douillard, A.; Chabert, B.; Fillit, R.; Vautrin, A.; David, L. Crystallization of isotactic polypropylene under high pressure (γ phase). Macromolecules 2000, 33, 4138–4145.

    Article  CAS  Google Scholar 

  47. Milner, S. T.; McLeish, T. C. B. Reptation and contour-length fluctuations in melts of linear polymers. Phys. Rev. Lett. 1998, 81(3), 725–728.

    Article  CAS  Google Scholar 

  48. Nie, C.; Peng, F.; Xu, T. Y.; Sheng, J. F.; Chen, W.; Li, L. B. A unified thermodynamic model of flow-induced crystallization of polymer. Chinese J. Polym. Sci. 2021, 39, 1489–1495.

    Article  CAS  Google Scholar 

  49. Carpick, R. W.; Sasaki, D. Y.; Burns, A. R. Large friction anisotropy of a polydiacetylene monolayer. Tribol. Lett. 1999, 7, 79–85.

    Article  CAS  Google Scholar 

  50. Carpick, R. W.; Salmeron, M. Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 1997, 97, 1163–1194.

    Article  CAS  PubMed  Google Scholar 

  51. Archard, J. F. Contact and rubbing of flat surfaces. J. Appl. Phys. 1953, 24, 981–988.

    Article  Google Scholar 

  52. Bonyadi, S. Z.; Dunn, A. C. Compositional dependence of polyacrylamide hydrogel abrasive wear resistance. ACS Appl. Polym. Mater. 2020, 2, 5444–5451.

    Article  CAS  Google Scholar 

  53. Chen, S.; Wang, J.; Ma, T.; Chen, D. Molecular dynamics simulations of wetting behavior of water droplets on polytetrafluorethylene surfaces. J. Chem. Phys. 2014, 140, 114704.

    Article  PubMed  Google Scholar 

  54. Choi, J. S.; Kim, J. S.; Byun, I. S.; Lee, D. H.; Lee, M. J.; Park, B. H.; Lee, C.; Yoon, D.; Cheong, H.; Lee, K. H.; Son, Y. W.; Park, J. Y.; Salmeron, M. Friction anisotropy-driven domain imaging on exfoliated monolayer graphene. Science 2011, 333, 607–610.

    Article  CAS  PubMed  Google Scholar 

  55. Flores, A.; Baltá Calleja, F. J.; Attenburrow, G. E.; Bassett, D. C. Microhardness studies of chain-extended pe: III. Correlation with yield stress and elastic modulus. Polymer 2000, 41, 5431–5435.

    Article  CAS  Google Scholar 

  56. Tranchida, D.; Piccarolo, S.; Soliman, M. Nanoscale mechanical characterization of polymers by AFM nanoindentations: critical approach to the elastic characterization. Macromolecules 2006, 39, 4547–4556.

    Article  CAS  Google Scholar 

  57. Eaton, M. D.; Brinson, L. C.; Shull, K. R. Temperature dependent fracture behavior in model epoxy networks with nanoscale heterogeneity. Polymer 2021, 221, 123560.

    Article  CAS  Google Scholar 

  58. Mi, D.; Xia, C.; Jin, M.; Wang, F.; Shen, K.; Zhang, J. Quantification of the effect of shish-kebab structure on the mechanical properties of polypropylene samples by controlling shear layer thickness. Macromolecules 2016, 49, 4571–4578.

    Article  CAS  Google Scholar 

  59. Luo, F.; Liu, X.; Yan, C.; Liu, H.; Dong, M.; Mai, X.; Shen, C.; Liu, C.; Zhang, J.; Wang, N.; Guo, Z. Molecular orientation dependent dynamic viscoelasticity in uni-axially drawn polycarbonate. Polym. Test. 2018, 69, 528–535.

    Article  CAS  Google Scholar 

  60. Xu, M. M.; Huang, G. Y.; Feng, S. S.; McShane, G. J.; Stronge, W. J. J. P. Static and dynamic properties of semi-crystalline polyethylene. Polymers 2016, 8, 77.

    Article  PubMed Central  Google Scholar 

  61. Ramanathan, T.; Schulz, E.; Subramanian, K. Determination of micro-hardness and elastic modulus in the transcrystalline zone of carbon fibre/PPS composites using a knife edge indentor. Compos. Sci. Technol. 2005, 65, 1–7.

    Article  CAS  Google Scholar 

  62. Stanković, M.; Marinković, A.; Grbović, A.; Mišković, Ž.; Rosić, B.; Mitrović, R. Determination of Archard’s wear coefficient and wear simulation of sliding bearings. Ind. Lubr. Tribol. 2019, 71, 119–125.

    Article  Google Scholar 

  63. Bhushan, B. Introduction to tribology; A John Wiley & Sons, New York, NY, 2013.

    Book  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21676217, 52003215, 21978240 and 52003219), Youth Project of Basic Research Program of Natural Science in Shaanxi Province (No. 2020JQ179) the Fundamental Research Funds for the Central Universities (Nos. 3102018AX004 and 3102017jc01001), and the Open Testing Foundation of the Analytical & Testing Center of Northwestern Polytechnical University (No. 2020T020). The authors thank Shanghai Synchrotron Radiation Facility (SSRF) for supporting the X-ray measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Hui Chen.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LQ., Yang, SG., Zhang, JH. et al. Insight into the Excellent Tribological Performance of Highly Oriented Poly(phenylene sulfide). Chin J Polym Sci 40, 290–298 (2022). https://doi.org/10.1007/s10118-022-2672-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2672-x

Keywords

Navigation