Skip to main content
Log in

Non-isothermal crystalliztion kinetics of poly(phenylene sulfide) with low crosslinking levels

  • Paper
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Poly(phenylene sulfide) (PPS) with different crosslinking levels was successfully fabricated by means of high-temperature isothermal treatment (IT). The crosslinking degree of PPS was increased with IT time as revealed by Fourier-transform infrared spectroscopy and dynamic viscosity measurements. Its influence on the non-isothermal crystallization behaviors of PPS was studied by differential scanning calorimeter (DSC). The crystallization peak temperature of PPS with 6 h IT was 15 K higher than that of the one with 2 h IT at 30 K/min cooling rate. The non-isothermal crystallization data were also analyzed based on the Ozawa model. The Ozawa exponent m decreased from 3.5 to 2.2 at 232°C with the increase of the IT time, suggestive of intensive thermal oxidative crosslinking reducing the crystallite dimension as PPS crystal grew. The reduced cooling crystallization function K(T) was indicative of the larger activation energy of crosslinked PPS chain diffusion into crystal lattice, resulting in a slow crystal growth rate. Additionally, the overall crystallization rate of PPS was also accelerated with the increase of crosslinking degree from the observation of polarized optical micrograph. These results indicated that the chemical crosslinked points and network structures formed during the high-temperature isothermal treatment acted as the effective nucleating sites, which greatly promoted the crystallization process of PPS and changed the type of nucleation and the geometry of crystal growth accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hill, H.W. and Brady, D.G., Polym. Eng. Sci., 1976, 16: 831

    Article  CAS  Google Scholar 

  2. Liu, P.Q., Hu, A., Wang, S., Shi, M.W., Ye, G.D. and Xu, J.J., J. Appl. Polym. Sci., 2011, 121: 14

    Article  CAS  Google Scholar 

  3. Jog, G.P. and Nadkarni, V.M., J. Appl. Polym. Sci., 1985, 30: 977

    Article  Google Scholar 

  4. López, L.C. and Wilkes, G.L., Polymer, 1988, 29: 106

    Article  Google Scholar 

  5. Mehl, N.A. and Rebenfeld, L., Polym. Eng. Sci., 1992, 32: 19

    Article  Google Scholar 

  6. Jog, J.P. and Nadkarni, V.M., J. Appl. Polym. Sci., 1985, 30: 997

    Article  CAS  Google Scholar 

  7. Jog, J.P. and Ravindranath, K., J. Appl. Polym. Sci., 1993, 49: 1395

    Article  Google Scholar 

  8. Lovinger, A.J., Davis, D.D. and Padden, F.J., Polymer, 1985, 26: 1595

    Article  CAS  Google Scholar 

  9. Menczel, J.D. and Collins, G.L., Polym. Eng. Sci., 1992, 32: 1264

    Article  CAS  Google Scholar 

  10. Collins, G.L. and Menczel, J.D., Polym. Eng. Sci., 1992, 32: 1270

    Article  CAS  Google Scholar 

  11. Zeng, H. and Ho, G.J., Die Angewandte Makromolekulare Chemie, 1984, 127: 103

    Article  CAS  Google Scholar 

  12. Silvestre, C., Pace, E. Di. and Napolitano, R., J. Polym. Sci. Part B: Polym. Phys., 2001, 39: 415

    Article  CAS  Google Scholar 

  13. Mai, K.C., Zhang, S.C., Gao, Q.F. and Zeng, H., Polym. Mater. Sci. Eng., 2000, 16(5): 81

    CAS  Google Scholar 

  14. Quan, H., Zhong, G.J. and Li, Z.M., Polym. Eng. Sci., 2005, 45: 1303

    Article  CAS  Google Scholar 

  15. Zhang, R.C., Xu, Y., Lu, A., Cheng, K.M., Huang, Y.G. and Li, Z.M., Polymer, 2008, 49:2604

    Article  CAS  Google Scholar 

  16. Golovoy, A., Mazich, K.A. and Cheung, M.F., Polym. Bull., 1989, 22: 175

    Article  CAS  Google Scholar 

  17. Hanley, S.J., Rafalko, J.J. and Steele, K.A., J. Polym. Sci. Part A: Polym. Chem., 1999, 37: 3473

    Article  CAS  Google Scholar 

  18. López, L.C. and Wilkes, G.L., Polymer, 1989, 30: 882

    Article  Google Scholar 

  19. Zhang, R.C., Huang, Y.G., Min, M., Gao, Y., Lu, A. and Lu, Z.Y., J. Appl. Polym. Sci., 2008, 107: 2600

    Article  CAS  Google Scholar 

  20. Minkova, L.I. and Magagnini, P.L., Polymer, 1995, 36: 2059

    Article  CAS  Google Scholar 

  21. Gopakumar, T.G., Ghadage, R.S., Ponrathnam, S. and Rajan, C.R., Polymer, 1997, 38: 2209

    Article  CAS  Google Scholar 

  22. Herrero, C.H. and Acosta, J.L., Polymer, 1994, 26: 786

    Article  CAS  Google Scholar 

  23. Ozawa, T., Polymer, 1971, 12: 150

    Article  CAS  Google Scholar 

  24. Addonizio, M.L. and Silvestre, C.M., Polymer, 1987, 28: 183

    Article  CAS  Google Scholar 

  25. López, L.C. and Wilkes, L.G., Polymer, 1987, 30: 882

    Article  Google Scholar 

  26. Di Lorenzo, M.L. and Silvestre, C.M., Prog. Polym. Sci., 1999, 24: 917

    Article  Google Scholar 

  27. Ziabicki, A. and Sakjiewitz, A., Colloid. Polym. Sci., 1998, 276: 680

    Article  CAS  Google Scholar 

  28. Hill, H.W.J., Advan. Chem., 1973, 129: 80

    Article  Google Scholar 

  29. Gopakumar, T.G., Ghadage, R.S., Ponrathnam, S. and Rajan, C.R., Polymer, 1996, 38: 2209

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-ming Li  (李忠明).

Additional information

This work was financially supported by the National Science Fund for Distinguished Young Scholars (No. 50925311) and the National Natural Science Foundation of China (No. 20976112).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, Fl., Xu, Y., Pang, H. et al. Non-isothermal crystalliztion kinetics of poly(phenylene sulfide) with low crosslinking levels. Chin J Polym Sci 31, 462–470 (2013). https://doi.org/10.1007/s10118-013-1235-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-013-1235-6

Keywords

Navigation