Skip to main content
Log in

Cold plasma treatment advancements in food processing and impact on the physiochemical characteristics of food products

  • Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Cold plasma processing is a nonthermal approach that maintains food quality while minimizing the effects of heat on its nutritious qualities. Utilizing activated, highly reactive gaseous molecules, cold plasma processing technique inactivates contaminating microorganisms in food and packaging materials. Pesticides and enzymes that are linked to quality degradation are currently the most critical issues in the fresh produce industry. Using cold plasma causes pesticides and enzymes to degrade, which is associated with quality deterioration. The product surface characteristics and processing variables, such as environmental factors, processing parameters, and intrinsic factors, need to be optimized to obtain higher cold plasma efficiency. The purpose of this review is to analyse the impact of cold plasma processing on qualitative characteristics of food products and to demonstrate the effect of cold plasma on preventing microbiological concerns while also improving the quality of minimally processed products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albertos I, Martín-Diana, AB, Cullen, PJ, Tiwari, BK, Ojha, SK, Bourke, P, Álvarez, C, Rico, D. Effects of dielectric barrier discharge (DBD) generated plasma on microbial reduction and quality parameters of fresh mackerel (Scomber scombrus) fillets. Innovative Food Science and Emerging Technologies. 44: 117–122 (2017) https://doi.org/10.1016/j.ifset.2017.07.006

    Article  CAS  Google Scholar 

  • Ali S, Khan AS, Malik AU. Postharvest L-cysteine application delayed pericarp browning, suppressed lipid peroxidation and maintained antioxidative activities of litchi fruit. Postharvest Biology and Technology. 121: 135–142 (2016)

  • Almeida, FDL, Cavalcante, RS, Cullen, PJ, Frias, JM, Bourke, P, Fernandes, FAN, Rodrigues, S. Effects of atmospheric cold plasma and ozone on prebiotic orange juice. Innovative Food Science and Emerging Technologies. 32: 127–135 (2015) https://doi.org/10.1016/j.ifset.2015.09.001

    Article  CAS  Google Scholar 

  • Amini, M, Ghoranneviss, M. Effects of cold plasma treatment on antioxidants activity, phenolic contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. LWT. 73: 178–184 (2016) https://doi.org/10.1016/j.lwt.2016.06.014

    Article  CAS  Google Scholar 

  • Amini M, Ghoranneviss M, Abdijadid S. Effect of cold plasma on crocin esters and volatile compounds of saffron. Food Chemistry. 235: 290–293 (2017) https://doi.org/10.1016/j.foodchem.2017.05.067

    Article  CAS  PubMed  Google Scholar 

  • Anbarasan R, Jaspin S, Bhavadharini B, Pare, A, Pandiselvam R, Mahendran, R Chlorpyrifos pesticide reduction in soybean using cold plasma and ozone treatments. LWT. 159: 113193 (2022) https://doi.org/10.1016/j.lwt.2022.113193

    Article  CAS  Google Scholar 

  • Anthon GE, Barrett DM. Kinetic parameters for the thermal inactivation of quality-related enzymes in carrots and potatoes. Journal of Agricultural and Food Chemistry. 50(14): 4119–4125 (2002)

  • Athukorala S N P, Fernando WG D, Rashid K Y. Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Canadian Journal of Microbiology. 55(9): 1021–1032 (2009) https://doi.org/10.1139/w09-067

    Article  CAS  PubMed  Google Scholar 

  • Attri P, Sarinont T, Kim M, Amano T, Koga K, Cho A E, Ha Choi E H, Shiratani M. Influence of ionic liquid and ionic salt on protein against the reactive species generated using dielectric barrier discharge plasma [Sci. rep.]. Scientific Reports. 5: 17781 (2015) https://doi.org/10.1038/srep17781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Chen J, Mu H, Zhang C, Li B. Reduction of dichlorvos and omethoate residues by O2 plasma treatment. Journal of Agricultural and Food Chemistry. 57(14): 6238–6245 (2009) https://doi.org/10.1021/jf900995d

    Article  CAS  PubMed  Google Scholar 

  • Bermúdez-Aguirre D, Corradini MG, Candoğan K, Barbosa-Cánovas GV. High pressure processing in combination with high temperature and other preservation factors. High Pressure Processing of Food: Principles, Technology and Applications. 193–215 (2016)

  • Ben’ko E M, Manisova O R, Lunin V V. Effect of ozonation on the reactivity of lignocellulose substrates in enzymatic hydrolyses to sugars. Russian Journal of Physical Chemistry A. 87(7): 1108–1113 (2013) https://doi.org/10.1134/S0036024413070091

    Article  CAS  Google Scholar 

  • Boffetta P, Couto E, Wichmann J, Ferrari P, Trichopoulos D, Bueno-de-Mesquita HB, Van Duijnhoven FJ, Büchner FL, Key T, Boeing H, Nöthlings U. Fruit and vegetable intake and overall cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Journal of the National Cancer Institute. 102(8): 529–537 (2010)

  • Burm KTAL. Plasma: the fourth state of matter. Plasma Chemistry and Plasma Processing. 32: 401–407 (2012)

    Article  CAS  Google Scholar 

  • Bußler S, Ehlbeck J, Schlüter O K. Pre-drying treatment of plant related tissues using plasma processed air: iimpact on enzyme activity and quality attributes of cut apple and potato. Innovative Food Science and Emerging Technologies. 40: 78–86 (2017) https://doi.org/10.1016/j.ifset.2016.05.007

    Article  CAS  Google Scholar 

  • Charoux CMG, Patange A, Lamba S, O’Donnell CP, Tiwari BK, Scannell AGM. Applications of nonthermal plasma technology on safety and quality of dried food ingredients. Journal of Applied Microbiology. 130(2): 325–340 (2021)

  • Charoux CM, Patange AD, Hinds LM, Simpson JC, O’Donnell CP, Tiwari BK. Antimicrobial effects of airborne acoustic ultrasound and plasma activated water from cold and thermal plasma systems on biofilms. Scientific Reports. 10(1):1–10 (2020)

  • Choi S, Puligundla P, Mok C. Corona discharge plasma jet for inactivation of Escherichia coli O157:H7 and listeria monocytogenes on inoculated pork and its impact on meat quality attributes. Annals of Microbiology. 66: 685–694 (2016) https://doi.org/10.1007/s13213-015-1147-5

    Article  CAS  Google Scholar 

  • Cruz RM, Vieira MC, Silva CL. Effect of heat and thermosonication treatments on peroxidase inactivation kinetics in watercress (Nasturtium officinale). Journal of Food Engineering. 72(1): 8–15 (2006)

  • Devi Y, Thirumdas R, Sarangapani C, Deshmukh R R, Annapure U S. Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control. 77: 187–191 (2017) https://doi.org/10.1016/j.foodcont.2017.02.019

    Article  CAS  Google Scholar 

  • Dionísio A P, Gomes R T, Oetterer M. Ionizing radiation effects on food vitamins: a review. Brazilian Archives of Biology and Technology. 52: 1267–1278 (2009) https://doi.org/10.1590/S1516-89132009000500026

    Article  Google Scholar 

  • Ekezie FGC, Sun DW, Cheng JH. A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in Food Science & Technology. 69, 46–58 (2017)

  • Fernandes FA, Rodrigues S. Cold plasma processing on fruits and fruit juices: a review on the effects of plasma on nutritional quality. Processes. 9(12): 2098 (2021)

    Article  CAS  Google Scholar 

  • Giner J, Gimeno V, Espachs A, Elez P, Barbosa-Cánovas GV, Martı́n O. Inhibition of tomato (Licopersicon esculentum Mill.) pectin methylesterase by pulsed electric fields. Innovative Food Science & Emerging Technologies. 1(1): 57–67 (2000)

  • Grzegorzewski F, Ehlbeck J, Schlüter O, Kroh L W, Rohn S. Treating lamb’s lettuce with a cold plasma-influence of atmospheric pressure ar plasma immanent species on the phenolic profile of Valerianella locusta. LWT – Food Science and Technology. 44: 2285–2289 (2011) https://doi.org/10.1016/j.lwt.2011.05.004

    Article  CAS  Google Scholar 

  • Han L, Patil S, Boehm D, Milosavljević V, Cullen P J, Bourke P. Mechanisms of inactivation by highvoltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Applied and Environmental Microbiology. 82: 450–458 (2016) https://doi.org/10.1128/AEM.02660-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han YX, Cheng JH, Sun DW. Changes in activity, structure and morphology of horseradish peroxidase induced by cold plasma. Food chemistry. 301: 125240 (2019)

  • Hou Y, Wang R, Gan Z, Shao T, Zhang X, He M, Sun A. Effect of cold plasma on blueberry juice quality. Food Chemistry. 290: 79–86 (2019) https://doi.org/10.1016/j.foodchem.2019.03.123

    Article  CAS  PubMed  Google Scholar 

  • Jayasena D D, Kim H J, Yong H I, Park S, Kim K, Choe W, Jo C. Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: effects on pathogen inactivation and meat-quality attributes. Food Microbiology. 46: 51–57 (2015) https://doi.org/10.1016/j.fm.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Lee EJ, Choi E H, Kim YJ. Inactivation of Staphylococcus aureus on the beef jerky by radio-frequency atmospheric pressure plasma discharge treatment. Innovative Food Science and Emerging Technologies. 22: 124–130 (2014) https://doi.org/10.1016/j.ifset.2013.12.012

    Article  Google Scholar 

  • Kim JE, Oh YJ, Won MY, Lee KS, Min SC. Microbial decontamination of onion powder using microwave-powered cold plasma treatments. Food Microbiology. 62: 112–123 (2017) https://doi.org/10.1016/j.fm.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  • Kovačević DB, Kljusurić JG, Putnik P, Vukušić T, Herceg Z, Dragović-Uzelac V. Stability of polyphenols in chokeberry juice treated with gas phase plasma. Food Chemistry. 212: 323–331 (2016)

  • Lacombe A, Niemira B A, Gurtler J B, Fan X, Sites J, Boyd G, Chen H. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiology. 46: 479–484 (2015) https://doi.org/10.1016/j.fm.2014.09.010

    Article  CAS  PubMed  Google Scholar 

  • Lacombe A, Niemira BA, Gurtler JB, Sites J, Boyd G, Kingsley DH, Chen H. Nonthermal inactivation of norovirus surrogates on blueberries using atmospheric cold plasma. Food Microbiology. 63: 1–5 (2017)

  • Ladikos D, Lougovois V. Lipid oxidation in muscle foods: a review. Food Chemistry. 35: 295–314 (1990) https://doi.org/10.1016/0308-8146(90)90019-Z

    Article  CAS  Google Scholar 

  • Lee J, Lee CW, Yong HI, Lee HJ, Jo C, Jung S. Use of atmospheric pressure cold plasma for meat industry. Korean Journal for Food Science of Animal Resources. 37(4): 477 (2017)

  • Lee KH, Kim HJ, Woo KS, Jo C, Kim JK, Kim SH, Park HY, Oh SK, Kim WH. Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. LWT. 73: 442–447 (2016) https://doi.org/10.1016/j.lwt.2016.06.055

    Article  CAS  Google Scholar 

  • Lee KH, Kim HJ, Woo K S, Jo C, Kim JK, Kim S H, Park HY, Oh SK, Kim WH. Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. LWT. 73: 442–447 (2016). https://doi.org/10.1016/j.lwt.2016.06.055

    Article  CAS  Google Scholar 

  • Li Y, Kojtari A, Friedman G, Brooks A D, Fridman A, Ji HF. Decomposition of L-valine under nonthermal dielectric barrier discharge plasma. Journal of Physical Chemistry B. 118: 1612–1620 (2014). https://doi.org/10.1021/jp411440k

    Article  CAS  PubMed  Google Scholar 

  • Liao X, Liu D, Xiang Q, Ahn J, Chen S, Ye X, Ding T. Inactivation mechanisms of nonthermal plasma on microbes: a review. Food Control. 75: 83–91 (2017). https://doi.org/10.1016/j.foodcont.2016.12.021

    Article  CAS  Google Scholar 

  • Liu W, Liu Y, Zhu R, Yu J, Lu W, Pan C, Yao W, Gao X. Structure characterization, chemical and enzymatic degradation, and chain conformation of an acidic polysaccharide from Lycium barbarum L. Carbohydrate Polymers. 147: 114–124 (2016)

  • Mandal R, Singh A, Singh AP. Recent developments in cold plasma decontamination technology in the food industry. Trends in Food Science & Technology. 80, 93–103 (2018)

  • Min S C, Roh S H, Niemira B A, Sites J E, Boyd G, Lacombe A. Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in Romaine lettuce. International Journal of Food Microbiology. 237: 114–120 (2016). https://doi.org/10.1016/j.ijfoodmicro.2016.08.025

    Article  CAS  PubMed  Google Scholar 

  • Min SC, Roh S H, iemira BA, Boyd G, Sites J E, Uknalis J, Fan X. In-package inhibition of E. coli O157:H7 on bulk Romaine lettuce using cold plasma. Food Microbiology. 65: 1–6 (2017). https://doi.org/10.1016/j.fm.2017.01.010

    Article  CAS  PubMed  Google Scholar 

  • Mir SA, Shah MA, Mir MM. Understanding the role of plasma technology in food industry. Food and Bioprocess Technology. 9: 734–750 (2016)

  • Misra, N. Quality of cold plasma treated plant foods. Cold Plasma Food Agric., 253–271 (2016)

    Google Scholar 

  • Misra N N, Keener K M, Bourke P, Mosnier J P, Cullen P J. Inpackage atmospheric pressure cold plasma treatment of cherry tomatoes. Journal of Bioscience and Bioengineering. 118: 177–182 (2014). https://doi.org/10.1016/j.jbiosc.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  • Misra N N, Patil S, Moiseev T, Bourke P, Mosnier J P, Keener K M, Cullen P J. In-package atmospheric pressure cold plasma treatment of strawberries. Journal of Food Engineering. 125: 131–138 (2014). https://doi.org/10.1016/j.jfoodeng.2013.10.023

    Article  CAS  Google Scholar 

  • Misra N N, Kaur S, Tiwari B K, Kaur A, Singh N, Cullen P J. Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocolloids. 44: 115–121 (2015) https://doi.org/10.1016/j.foodhyd.2014.08.019

    Article  CAS  Google Scholar 

  • Misra NN, Pankaj SK, Segat A, Ishikawa K. Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science and Technology. 55: 39–47 (2016) https://doi.org/10.1016/j.tifs.2016.07.001

    Article  CAS  Google Scholar 

  • Muhammad A I, Xiang Q, Liao X, Liu D, Ding T. Understanding the impact of nonthermal plasma on food constituents and microstructure-a review. Food and Bioprocess Technology. 11: 463–486 (2018)

    Article  CAS  Google Scholar 

  • Mukhtar K, Nabi BG, Arshad RN, Roobab U, Yaseen B, Ranjha MMAN, Aadil RM, Ibrahim SA. Potential impact of ultrasound, pulsed electric field, high-pressure processing, microfludization against thermal treatments preservation regarding sugarcane juice (Saccharum officinarum). Ultrasonics Sonochemistry. 90: 106194 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neves FI, Vieira MC, Silva CL. Inactivation kinetics of peroxidase in zucchini (Cucurbita pepo L.) by heat and UV-C radiation. Innovative Food Science & Emerging Technologies. 13: 158–162 (2012)

  • Neyts EC, Ostrikov K, Sunkara MK, Bogaerts A. Plasma catalysis: synergistic effects at the nanoscale. Chemical Reviews. 115(24): 13408–13446 (2015)

  • Niemira BA, Sites J. Cold plasma inactivates Salmonella stanley and Escherichia coli O157:H7 inoculated on golden delicious apples. Journal of Food Protection. 71: 1357–1365 (2008)

    Article  PubMed  Google Scholar 

  • Niveditha A, Pandiselvam R, Prasath VA, Singh SK, Gul K, Kothakota A. Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods-A review. Food Control. 130: 108338 (2021)

    Article  CAS  Google Scholar 

  • Oehmigen K, Hähnel M, Brandenburg R, Wilke C, Weltmann KD, von Woedtke T. The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Processes and Polymers. 7: 250–257 (2010)

    Article  CAS  Google Scholar 

  • Oh Y J, Song A Y, Min S C. Inhibition of Salmonella typhimurium on radish sprouts using nitrogen-cold plasma. International Journal of Food Microbiology. 249: 66–71 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Pandey V K, Islam R U, Shams R, Dar A H. A comprehensive review on the application of essential oils as bioactive compounds in nano-emulsion based edible coatings of fruits and vegetables. Applied Food Research. 2: 100042 (2022)

    Article  CAS  Google Scholar 

  • Pandiselvam R, Sunoj S, Manikantan MR, Kothakota A, Hebbar KB. Application and kinetics of ozone in food preservation. Ozone: Science & Engineering. 39(2), 115–126 (2017)

  • Pandiselvam R, Kaavya R, Khanashyam A C, Divya V, Abdullah S K, Aurum F S, Kothakota A, Ramesh S V, Mousavi Khaneghah A. Research trends and emerging physical processing technologies in mitigation of pesticide residues on various food products. Environmental Science and Pollution Research. 29: 1–19 (2022)

    Article  Google Scholar 

  • Pankaj SK, Misra NN, Cullen PJ. Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innovative Food Science & Emerging Technologies. 19: 153–157 (2013)

  • Pankaj SK, Wan Z, Colonna W, Keener KM. Effect of high voltage atmospheric cold plasma on white grape juice quality. Journal of the Science of Food and Agriculture. 97: 4016–4021 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Pankaj SK, Wan Z, Keener KM. Effects of cold plasma on food quality: a review. Foods. 7: 4 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasquali F, Stratakos A C, Koidis A, Berardinelli A, Cevoli C, Ragni L, Mancusi R, Manfreda G, Trevisani M. Atmospheric cold plasma process for vegetable leaf decontamination: a feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control. 60: 552–559 (2016)

    Article  CAS  Google Scholar 

  • Prasad P, Mehta D, Bansal V, Sangwan R S. Effect of atmospheric cold plasma (ACP) with its extended storage on the inactivation of Escherichia coli inoculated on tomato. Food Research International. 102: 402–408 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Prithviraj V, Pandiselvam R, Babu AC, Kothakota A, Manikantan MR, Ramesh S V, Beegum PPS, Mathew AC, Hebbar KB. Emerging nonthermal processing techniques for preservation of tender coconut water. LWT. 149: 111850 (2021)

    Article  CAS  Google Scholar 

  • Ramazzina I, Berardinelli A, Rizzi F, Tappi S, Ragni L, Sacchetti G, Rocculi P. Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biology and Technology. 107: 55–65 (2015)

    Article  CAS  Google Scholar 

  • Ramazzina I, Tappi S, Rocculi P, Sacchetti G, Berardinelli A, Marseglia A, Rizzi F. Effect of cold plasma treatment on the functional properties of fresh-cut apples. Journal of Agricultural and Food Chemistry. 64: 8010–8018 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Rao W, Li Y, Dhaliwal H, Feng M, Xiang Q, Roopesh MS, Pan D, Du L. The application of cold plasma technology in low-moisture foods. Food Engineering Reviews. https://doi.org/10.1007/s12393-022-09329-9

    Article  PubMed Central  Google Scholar 

  • Rodríguez Ó, Gomes WF, Rodrigues S, Fernandes FAN. Effect of indirect cold plasma treatment on cashew apple juice (Anacardium occidentale L.). LWT. 84: 457–463 (2017)

    Article  Google Scholar 

  • Runguang Z. Effect of ozone treatment on the quality of strawberry fruit during storage. Academic Periodical of Farm Products Processing. 7: 19–22 (2011)

    Google Scholar 

  • Sarangapani C, Thirumdas R, Devi Y, Trimukhe A, Deshmukh RR Annapure US. Effect of lowpressure plasma on physico–chemical and functional properties of parboiled rice flour. LWT-Food Science and Technology. 69: 482–489 (2016)

  • Sarangapani C, O’Toole G, Cullen P J, Bourke P. Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science and Emerging Technologies. 44: 235–241 (2017)

    Article  CAS  Google Scholar 

  • Sarangapani C, Ryan Keogh D, Dunne J, Bourke P, Cullen P J. Characterisation of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chemistry. 235: 324–333 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Sarangapani C, Yamuna Devi RY, Thirumdas R, Trimukhe AM, Deshmukh RR, Annapure US. Physico-chemical properties of low-pressure plasma treated black gram. LWT – Food Science and Technology. 79: 102-110 (2017)

    Article  CAS  Google Scholar 

  • Sarangapani C, Patange A, Bourke P, Keener K, Cullen PJ . Recent advances in the application of cold plasma technology in foods. Annual Review of Food Science and Technology. 9: 609–629 (2018)

  • Scholtz V, Pazlarova J, Souskova H, Khun J, Julak J. Nonthermal plasma—A tool for decontamination and disinfection. Biotechnology Advances. 33(6): 1108–1119 (2015)

  • Segat A, Misra NN, Cullen PJ, Innocente N. Effect of atmospheric pressure cold plasma (ACP) on activity and structure of alkaline phosphatase. Food and Bioproducts Processing. 98: 181–188 (2016)

    Article  CAS  Google Scholar 

  • Segura-Ponce LA, Reyes JE, Troncoso-Contreras G, Valenzuela-Tapia G. Effect of low-pressure cold plasma (LPCP) on the wettability and the inactivation of Escherichia coli and Listeria innocua on fresh-cut apple (Granny Smith) skin. Food and Bioprocess Technology. 11: 1075–1086 (2018)

    Article  CAS  Google Scholar 

  • Shan B, Cai Y Z, Sun M, Corke H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. Journal of Agricultural and Food Chemistry. 53: 7749–7759 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Siciliano I, Spadaro D, Prelle A, Vallauri D, Cavallero MC, Garibaldi A, Gullino ML. Use of cold atmospheric plasma to detoxify hazelnuts from aflatoxins. Toxins. 8(5), 125 (2016)

  • Singh H, Blennow A, Gupta AD, Kaur P, Dhillon B, Sodhi NS, Dubey PK. Pulsed light, pulsed electric field and cold plasma modification of starches: technological advancements & effects on functional properties. Journal of Food Measurement and Characterization. 16: 1–18 (2022)

    Article  Google Scholar 

  • Song AY, Oh YJ, Kim JE, Song KB, Oh DH, Min SC. Cold plasma treatment for microbial safety and preservation of fresh lettuce. Food Science and Biotechnology. 24: 1717–1724 (2015)

    Article  CAS  Google Scholar 

  • Sruthi NU, Josna K, Pandiselvam R, Kothakota A, Gavahian M, Khaneghah AM. Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food: A comprehensive review. Food Chemistry. 368: 130809 (2022)

  • Stranska M, Prusova N, Behner A, Dzuman Z, Lazarek M, Tobolkova A, Chrpova J, Hajslova J. Influence of pulsed electric field treatment on the fate of Fusarium and Alternaria mycotoxins present in malting barley. Food Control. 145: 109440 (2023)

    Article  CAS  Google Scholar 

  • Surowsky B, Froehling A, Gottschalk N, Schlüter O, Knorr D. Impact of cold plasma on Citrobacter freundii in apple juice: Inactivation kinetics and mechanisms. International Journal of Food Microbiology. 174: 63–71 (2014)

  • Tappi S, Berardinelli A, Ragni L, Dalla Rosa M, Guarnieri A, Rocculi P. Atmospheric gas plasma treatment of fresh-cut apples. Innovative Food Science & Emerging Technologies. 21: 114–122 (2014).

  • Tappi S, Gozzi G, Vannini L, Berardinelli A, Romani S, Ragni L, Rocculi P. Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science and Emerging Technologies. 33: 225–233 (2016)

    Article  CAS  Google Scholar 

  • Tappi S, Ragni L, Tylewicz U, Romani S, Ramazzina I, Rocculi P. Browning response of fresh-cut apples of different cultivars to cold gas plasma treatment. Innovative Food Science and Emerging Technologies. 53: 56–62 (2019)

    Article  CAS  Google Scholar 

  • Terefe NS, Yang YH, Knoerzer K, Buckow R, Versteeg C. High pressure and thermal inactivation kinetics of polyphenol oxidase and peroxidase in strawberry puree. Innovative Food Science & Emerging Technologies. 11(1): 52–60 (2010)

  • Thirumdas R, Saragapani C, Ajinkya MT, Deshmukh RR, Annapure US. Influence of low pressure cold plasma on cooking and textural properties of brown rice. Innovative Food Science and Emerging Technologies. 37: 53–60 (2016)

    Article  CAS  Google Scholar 

  • Ucar Y, Ceylan Z, Durmus M, Tomar O, Cetinkaya T. Application of cold plasma technology in the food industry and its combination with other emerging technologies. Trends in Food Science & Technology. 114: 355–371 (2021)

    Article  CAS  Google Scholar 

  • Ulbin-Figlewicz N, Jarmoluk A. Effect of low-pressure plasma treatment on the color and oxidative stability of raw pork during refrigerated storage. Food Science and Technology International. 22: 313–324 (2016)

    Article  PubMed  Google Scholar 

  • Wang R, Nian W, Wu H, Feng H, Zhang K, Zhang J, Zhu W, Becker K, Fang J. Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: inactivation and physiochemical properties evaluation. European Physical Journal D. 66: 1–7 (2012)

    Article  Google Scholar 

  • Wszelaki AL, Mitcham EJ. Effects of superatmospheric oxygen on strawberry fruit quality and decay. Postharvest Biology and Technology. 20: 125–133 (2000)

    Article  Google Scholar 

  • Xu L, Garner AL, Tao B, Keener KM. Microbial inactivation and quality changes in orange juice treated by high voltage atmospheric cold plasma. Food and Bioprocess Technology. 10: 1–33 (2017)

    Article  Google Scholar 

  • Yepez XV, Keener KM. High-voltage atmospheric cold plasma (HVACP) hydrogenation of soybean oil without trans-fatty acids. Innovative Food Science and Emerging Technologies. 38: 169–174 (2016)

    Article  CAS  Google Scholar 

  • Yong HI, Lee SH, Kim SY, Park S, Park J, Choe W, Jo C. Color development, physiochemical properties, and microbiological safety of pork jerky processed with atmospheric pressure plasma. Innovative Food Science and Emerging Technologies. 53: 78–84 (2017)

  • Yusupov M, Neyt, EC, Khalilov U, Snoeckx R, Van Duin ACT, Bogaerts A. Atomic-scale simulations of reactive oxygen plasma species interacting with bacterial cell walls. New Journal of Physics. 14(9): 093043 (2012)

  • Ziuzina D, Misra NN, Cullen PJ, Keener K, Mosnier JP, Vilaró I, Gaston E, Bourke P. Demonstrating the potential of industrial scale in-package atmospheric cold plasma for decontamination of cherry tomatoes. Plasma Medicine. 6: 397–412 (2016)

    Article  Google Scholar 

  • Ziuzina D, Misra NN, Han L, Cullen PJ, Moiseev T, Mosnier JP, Keener K, Gaston E, Vilaró I, Bourke P. Investigation of a large gap cold plasma reactor for continuous in-package decontamination of fresh strawberries and spinach. Innovative Food Science and Emerging Technologies. 59: 102229 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support provided by the Islamic University of Science and Technology, Kashmir, India, and Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Narayanpur, Malda, West Bengal for conducting this review. No public, commercial, or nonprofit funding organization provided a specific grant for conducting this review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aamir Hussain Dar or Kshirod Kumar Dash.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, S., Dar, A.H., Dash, K.K. et al. Cold plasma treatment advancements in food processing and impact on the physiochemical characteristics of food products. Food Sci Biotechnol 32, 621–638 (2023). https://doi.org/10.1007/s10068-023-01266-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-023-01266-5

Keywords

Navigation