Skip to main content
Log in

Microbial Inactivation and Quality Changes in Orange Juice Treated by High Voltage Atmospheric Cold Plasma

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Although atmospheric cold plasma is well known for nonthermal inactivation of microorganisms on surfaces, few studies examine its application to liquid food within a package. This study explores the decontamination efficiency of high voltage atmospheric cold plasma (HVACP) on Salmonella enterica serovar Typhimurium (S. enterica) in orange juice (OJ). Both direct and indirect HVACP treatments of 25-mL OJ induce greater than a 5-log reduction in S. enterica following 30 s of treatment with air and MA65 gas with no storage. For 50-mL OJ, 120 s of direct HVACP treatment followed by 24-h storage induced a 2.9-log reduction of S. enterica in air and a 4.7-log reduction in MA65 gas; 120 s of indirect HVACP treatment followed by 24-h storage resulted in a 2.2-log reduction in air and a 3.8-log reduction in MA65. No significant (P < 0.05) Brix or pH change occurred following 120-s HVACP treatment. Applying 120-s HVACP direct treatment reduced vitamin C by 22% in air (compared to 50% for heat pasteurization) and pectin methylesterase activity by 74% in air and 82% in MA65. These results demonstrate that HVACP can effectively inactivate Salmonella in OJ with minimal quality degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alkawareek, M. Y., Gorman, S. P., Graham, W. G., & Gilmore, B. F. (2014). Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma. International Journal of Antimicrobial Agents, 43(2), 154–160. doi:10.1016/j.ijantimicag.2013.08.022.

    Article  CAS  Google Scholar 

  • Arjunan, K. P., Friedman, G., Fridman, A., & Clyne, A. M. (2011). Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species. Journal of the Royal Society Interface. doi:10.1098/rsif.2011.0220.

  • Arreola, A. G., Balaban, M. O., Marshall, M. R., Peplow, A. J., Wei, C. I., & Cornell, J. A. (1991). Supercritical carbon dioxide effects on some quality attributes of single strength orange juice. Journal of Food Science, 56(4), 1030–1033. doi:10.1111/j.1365-2621.1991.tb14634.x.

    Article  CAS  Google Scholar 

  • Ayhan, Z., Yeom, H. W., Zhang, Q. H., & Min, D. B. (2001). Flavor, color, and vitamin C retention of pulsed electric field processed orange juice in different packaging materials. Journal of Agricultural and Food Chemistry. doi:10.1021/JF000984B.

  • Brayfield, R. S., Sanders, S. M., Jassem, A., Lauria, M., Garner, A. L., & Keener, K. M. (2016). Optical absorption spectroscopy of high voltage, cold atmospheric pressure plasmas. In 2016 I.E. International Conference on Plasma Science (ICOPS) (pp. 1–1). IEEE. doi:10.1109/PLASMA.2016.7534232.

  • Bruggeman, P. J., Kushner, M. J., Locke, B. R., Gardeniers, J. G. E., Graham, W. G., Graves, D. B., Hofman-Caris, R. C. H. M., Maric, D., Reid, J. P., Ceriani, E., & Rivas, D. F. (2016). Plasma–liquid interactions: a review and roadmap. Plasma Sources Science and Technology, 25(5), 053002. doi:10.1088/0963-0252/25/5/053002.

    Article  Google Scholar 

  • Center for Disease Control and Prevention. (2013). National enteric disease surveillance: Salmonella annual report, 2013. Retrieved from https://www.cdc.gov/nationalsurveillance/pdfs/salmonella-annual-report-2013-508c.pdf.

  • Choi, Y. H., Kim, J. H., Paek, K. H., Ju, W. T., & Hwang, Y. S. (2005). Characteristics of atmospheric pressure N2 cold plasma torch using 60-Hz AC power and its application to polymer surface modification. Surface and Coatings Technology, 193(1–3), 319–324. doi:10.1016/j.surfcoat.2004.08.145.

    Article  CAS  Google Scholar 

  • Cooper, M., Fridman, G., Fridman, A., & Joshi, S. G. (2010). Biological responses of Bacillus stratosphericus to floating electrode-dielectric barrier discharge plasma treatment. Journal of Applied Microbiology, 109(6), 2039–2048. doi:10.1111/j.1365-2672.2010.04834.x.

    Article  CAS  Google Scholar 

  • Corrales, M., Toepfl, S., Butz, P., Knorr, D., & Tauscher, B. (2008). Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innovative Food Science & Emerging Technologies, 9(1), 85–91. doi:10.1016/j.ifset.2007.06.002.

    Article  CAS  Google Scholar 

  • Coventry, J., Swiergon, P., Sanguansri, P., & Versteeg, C. (2009). Advances in innovative processing technologies for microbial inactivation and enhancement of food safety—pulsed electric field and low-temperature plasma. Trends in Food Science & Technology, 20(9), 414–424. doi:10.1016/j.tifs.2009.01.050.

    Article  Google Scholar 

  • Cserhalmi, Z., Sass-Kiss, Á., Tóth-Markus, M., & Lechner, N. (2006). Study of pulsed electric field treated citrus juices. Innovative Food Science & Emerging Technologies, 7(1), 49–54. doi:10.1016/j.ifset.2005.07.001.

    Article  CAS  Google Scholar 

  • Deng, X., Shi, J., & Kong, M. G. (2006). Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. IEEE Transactions on Plasma Science, 34(4), 1310–1316. doi:10.1109/TPS.2006.877739.

    Article  Google Scholar 

  • Dobrynin, D., Fridman, G., Friedman, G., & Fridman, A. (2009). Physical and biological mechanisms of direct plasma interaction with living tissue. New Journal of Physics, 11(11), 115020. doi:10.1088/1367-2630/11/11/115020.

    Article  Google Scholar 

  • Eagerman, B. A., & Rouse, A. H. (1976). Heat inactivation temperature-time relationships for pectinesterase inactivation in citrus juices. Journal of Food Science, 41(6), 1396–1397. doi:10.1111/j.1365-2621.1976.tb01180.x.

    Article  CAS  Google Scholar 

  • Ehlbeck, J., Schnabel, U., Polak, M., Winter, J., Von Woedtke, T., Brandenburg, R., et al. (2011). Low temperature atmospheric pressure plasma sources for microbial decontamination. Journal of Physics D: Applied Physics, 44(1), 13002. doi:10.1088/0022-3727/44/1/013002.

    Article  Google Scholar 

  • Fernández, A., Noriega, E., & Thompson, A. (2013). Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiology, 33, 24–29. doi:10.1016/j.fm.2012.08.007.

    Article  Google Scholar 

  • Fernández, A., Shearer, N., Wilson, D. R., & Thompson, A. (2012). Effect of microbial loading on the efficiency of cold atmospheric gas plasma inactivation of Salmonella enterica serovar Typhimurium. International Journal of Food Microbiology, 152(3), 175–180. doi:10.1016/j.ijfoodmicro.2011.02.038.

    Article  Google Scholar 

  • Fridman, A., Chirokov, A., & Gutsol, A. (2005). Non-thermal atmospheric pressure discharges. Journal of Physics D: Applied Physics, 38(38), 1–24. doi:10.1088/0022-3727/38/2/R01.

    Article  Google Scholar 

  • Fröhling, A., Durek, J., Schnabel, U., Ehlbeck, J., Bolling, J., & Schlüter, O. (2012). Indirect plasma treatment of fresh pork: Decontamination efficiency and effects on quality attributes. Innovative Food Science & Emerging Technologies, 16, 381–390. doi:10.1016/j.ifset.2012.09.001.

  • Gallagher, M.J., Vaze, N., Gangoli, S., Vasilets, V.N., Gutsol, A.F., Milovanova, T.N., Anandan, S., Murasko, D.M. & Fridman, A.A. (2007). Rapid inactivation of airborne bacteria using atmospheric pressure dielectric barrier grating discharge. IEEE Transactions on Plasma Science, 35(5), 1501–1510. doi:10.1109/TPS.2007.905209.

  • García-Viguera, C., & Bridle, P. (1999). Influence of structure on colour stability of anthocyanins and flavylium salts with ascorbic acid. Food Chemistry, 64(1), 21–26. doi:10.1016/S0308-8146(98)00107-1.

    Article  Google Scholar 

  • Gordillo-Vázquez, F. J. (2008). Air plasma kinetics under the influence of sprites. Journal of Physics D: Applied Physics, 41(23), 234016. doi:10.1088/0022-3727/41/23/234016.

    Article  Google Scholar 

  • Han, L., Lu, H., Patil, S., Keener, K. M., Cullen, P. J., & Bourke, P. (2014). Bacterial inactivation by high-voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA. Journal of Applied Microbiology, 116(4), 784–794. doi:10.1111/jam.12426.

    Article  CAS  Google Scholar 

  • Han, L., Patil, S., Boehm, D., Milosavljević, V., Cullen, P. J., & Bourke, P. (2015). Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Applied and Environmental Microbiology, 82(2), 450–458. doi:10.1128/AEM.02660-15.

    Article  CAS  Google Scholar 

  • Helmke, A., Hoffmeister, D., Berge, F., Emmert, S., Laspe, P., Mertens, N., et al. (2011). Physical and microbiological characterisation of Staphylococcus epidermidis inactivation by dielectric barrier discharge plasma. Plasma Processes and Polymers, 8(4), 278–286. doi:10.1002/ppap.201000168.

    Article  CAS  Google Scholar 

  • Henselová, M., Slováková, Ľ., Martinka, M., & Zahoranová, A. (2012). Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia, 67(3), 490–497. doi:10.2478/s11756-012-0046-5.

    Article  Google Scholar 

  • Ikawa, S., Kitano, K., & Hamaguchi, S. (2010). Effects of pH on bacterial inactivation in aqueous solutions due to low-temperature atmospheric pressure plasma application. Plasma Processes and Polymers, 7(1), 33–42. doi:10.1002/ppap.200900090.

    Article  CAS  Google Scholar 

  • Ishikawa, K. (2016). Chapter 5—plasma diagnostics. In: Cold plasma in food and agriculture (pp. 117–141). doi:10.1016/B978-0-12-801365-6.00005-6.

  • Jablonowski, H. (2015). Research on plasma medicine-relevant plasma–liquid interaction: what happened in the past five years? Clinical Plasma Medicine, 3(2), 42–52. doi:10.1016/j.cpme.2015.11.003.

    Article  Google Scholar 

  • Johnson, F. (2004). Atmospheric plasma inactivation of foodborne pathogens on fresh produce surfaces. Masters Theses. Retrieved from http://trace.tennessee.edu/utk_gradthes/2252.

  • Keener, K. M. (2016). Chapter 14—future of cold plasma in food processing. In: Cold plasma in food and agriculture (pp. 343–360). doi:10.1016/B978-0-12-801365-6.00014-7.

  • Kim, Y. H., Hong, Y. J., Baik, K. Y., Kwon, G. C., Choi, J. J., Cho, G. S., et al. (2014). Measurement of reactive hydroxyl radical species inside the biosolutions during non-thermal atmospheric pressure plasma jet bombardment onto the solution. Plasma Chemistry and Plasma Processing, 34(3), 457–472. doi:10.1007/s11090-014-9538-0.

    Article  CAS  Google Scholar 

  • Klockow, P. A., & Keener, K. M. (2008). Quality and safety assessment of packaged spinach treated with a novel atmospheric, non-equilibrium plasma system. In: 2008 Providence, Rhode Island, June 29–July 2, 2008 (p. 1). St. Joseph, MI: American Society of Agricultural and Biological Engineers. doi:10.13031/2013.25061.

  • Korachi, M., & Aslan, N. (2013). Low temperature atmospheric plasma for microbial decontamination, 453–459. Retrieved from http://www.formatex.info/microbiology4/vol1/453-459.pdf

  • Kramida, A., Ralchenko, Yu., Reader, J. & NIST ASD Team (20l6). NIST Atomic Spectra Database (version 5.4). Gaithersburg: National Institute of Standards and Technology. http://physics.nist.gov/asd.

  • Kuo, S. P., Tarasenko, O., Nourkbash, S., Bakhtina, A., & Levon, K. (2006). Plasma effects on bacterial spores in a wet environment. New Journal of Physics, 8(3), 41. doi:10.1088/1367-2630/8/3/041

    Article  Google Scholar 

  • Kvam, E., Davis, B., Mondello, F., & Garner, A. L. (2012). Nonthermal atmospheric plasma rapidly disinfects multidrug-resistant microbes by inducing cell surface damage. Antimicrobial Agents and Chemotherapy, 56(4), 2028–2036. doi:10.1128/AAC.05642-11.

    Article  CAS  Google Scholar 

  • Lang, J., Kling, R., Brachhold, H., Müller, R., & Pross, G. (2016). Plasma reactions. Ullmann’s Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a20_427.pub2.

  • Lee, H. S., & Coates, G. A. (2003). Effect of thermal pasteurization on Valencia orange juice color and pigments. LWT-Food Science and Technology, 36(1), 153–156. doi:10.1016/S0023-6438(02)00087-7.

  • Lee, J. Y., Kim, S. S., & Kang, D. H. (2015). Effect of pH for inactivation of Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes in orange juice by ohmic heating. LWT - Food Science and Technology, 62(1), 83–88. doi:10.1016/j.lwt.2015.01.020.

    Article  CAS  Google Scholar 

  • Lietz, A. M., & Kushner, M. J. (2016). Air plasma treatment of liquid covered tissue: long timescale chemistry. Journal of Physics D: Applied Physics, 49(42), 425204. doi:10.1088/0022-3727/49/42/425204.

    Article  Google Scholar 

  • Lu, X., Ye, T., Cao, Y., Sun, Z., Xiong, Q., Tang, Z., et al. (2008). The roles of the various plasma agents in the inactivation of bacteria. Journal of Applied Physics, 104(5), 53309. doi:10.1063/1.2977674.

    Article  Google Scholar 

  • Machala, Z., Janda, M., Hensel, K., Jedlovský, I., Leštinská, L., Foltin, V., et al. (2007). Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications. Journal of Molecular Spectroscopy, 243(2), 194–201. doi:10.1016/j.jms.2007.03.001.

    Article  CAS  Google Scholar 

  • Mai-Prochnow, A., Murphy, A. B., McLean, K. M., Kong, M. G., & Ostrikov, K. K. (2014). Atmospheric pressure plasmas: infection control and bacterial responses. International Journal of Antimicrobial Agents, 43(6), 508–517. doi:10.1016/j.ijantimicag.2014.01.025.

    Article  CAS  Google Scholar 

  • Meléndez-Martínez, A. J., Vicario, I. M., & Heredia, F. J. (2005). Instrumental measurement of orange juice colour: a review. Journal of the Science of Food and Agriculture, 85(6), 894–901. doi:10.1002/jsfa.2115.

    Article  Google Scholar 

  • Misra, N. N., Keener, K. M., Bourke, P., Mosnier, J.-P., & Cullen, P. J. (2014). In-package atmospheric pressure cold plasma treatment of cherry tomatoes. Journal of Bioscience and Bioengineering, 118(2), 177–182. doi:10.1016/j.jbiosc.2014.02.005.

    Article  CAS  Google Scholar 

  • Misra, N. N., Pankaj, S. K., Segat, A., & Ishikawa, K. (2016). Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science & Technology, 55, 39–47. doi:10.1016/j.tifs.2016.07.001.

    Article  CAS  Google Scholar 

  • Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S., & Cullen, P. J. (2011). Nonthermal plasma inactivation of food-borne pathogens. Food Engineering Reviews, 3(3–4), 159–170. doi:10.1007/s12393-011-9041-9.

    Article  Google Scholar 

  • Misra, N. N., Ziuzina, D., Cullen, P. J., & Keener, K. M. (2012). Characterization of a novel cold atmospheric air plasma system for treatment of packaged liquid food products. In American Society of Agricultural and Biological Engineers Annual International Meeting 2012, ASABE 2012 (Vol. 3, pp. 2183–2196). doi:10.13031/trans.56.9939.

  • Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., & Yahia, L. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. International Journal of Pharmaceutics, 226(1–2), 1–21. doi:10.1016/S0378-5173(01)00752-9.

    Article  CAS  Google Scholar 

  • Moiseev, T., Misra, N. N., Patil, S., Cullen, P. J., Bourke, P., Keener, K. M., & Mosnier, J. P. (2014). Post-discharge gas composition of a large-gap DBD in humid air by UV–Vis absorption spectroscopy. Plasma Sources Science and Technology, 23(6), 65033. doi:10.1088/0963-0252/23/6/065033.

    Article  CAS  Google Scholar 

  • Napartovich, A. P. (2001). Overview of atmospheric pressure discharges producing nonthermal plasma. Plasmas and Polymers, 6(1/2), 1–14. doi:10.1023/A:1011313322430.

    Article  CAS  Google Scholar 

  • Oehmigen, K., Hähnel, M., Brandenburg, R., Wilke, C., Weltmann, K.-D., & von Woedtke, T. (2010). The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Processes and Polymers, 7(3–4), 250–257. doi:10.1002/ppap.200900077.

    Article  CAS  Google Scholar 

  • Pankaj, S. K., Bueno-Ferrer, C., Misra, N. N., Milosavljević, V., O’Donnell, C. P., Bourke, P., et al. (2014). Applications of cold plasma technology in food packaging. Trends in Food Science & Technology, 35(1), 5–17. doi:10.1016/j.tifs.2013.10.009.

    Article  CAS  Google Scholar 

  • Patil, S., & Bourke, P. (2016). Chapter 6—principles of nonthermal plasma decontamination. In: Cold plasma in food and agriculture (pp. 143–177). doi:10.1016/B978-0-12-801365-6.00006-8.

  • Patil, S., Moiseev, T., Misra, N. N., Cullen, P. J., Mosnier, J. P., Keener, K. M., & Bourke, P. (2014). Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package. The Journal of Hospital Infection, 88(3), 162–169. doi:10.1016/j.jhin.2014.08.009.

    Article  CAS  Google Scholar 

  • Polydera, A. C., Stoforos, N. G., & Taoukis, P. S. (2003). Comparative shelf life study and vitamin C loss kinetics in pasteurised and high pressure processed reconstituted orange juice. Journal of Food Engineering, 60(1), 21–29. doi:10.1016/S0260-8774(03)00006-2.

    Article  Google Scholar 

  • Ricard, A., Oh, S.-G., & Guerra, V. (2013). Line-ratio determination of atomic oxygen and metastable absolute densities in an RF nitrogen late afterglow line-ratio determination of atomic oxygen and N 2 (A 3 Σ + u ) metastable absolute densities in an RF nitrogen late afterglow. Plasma Sources Sci. Technol. Plasma Sources Sci. Technol, 22(22), 35009–35009. doi:10.1088/0963-0252/22/3/035009.

    Article  Google Scholar 

  • Roberts, T. A., Cordier, J. L., Gram, L., Tompkin, R. B., Pitt, J. I., Gorris, L. G. M., & Swanson, K. M. J. (2005). Fruits and fruit products. In Micro-organisms in foods 6 (pp. 326–359). Boston, MA: Springer US. doi:10.1007/0-387-28801-5_6.

    Chapter  Google Scholar 

  • Rouse, A. H., & Atkins, C. D. (1955). Pectinesterase and pectin in commercial citrus juices as determined by methods used at the Citrus Experiment Station. California Agriculture Experimental Station Bulletin, 570, 1–9.

  • Sadler, G. D., Parksh, M. E., & Wicker, L. (1992). Microbial, enzymatic, and chemical changes during storage of fresh and processed orange juice. Journal of Food Science, 57(5), 1187–1197. doi:10.1111/j.1365-2621.1992.tb11295.x.

    Article  CAS  Google Scholar 

  • Sampedro, F., McAloon, A., Yee, W., Fan, X., & Geveke, D. J. (2014). Cost analysis and environmental impact of pulsed electric fields and high pressure processing in comparison with thermal pasteurization. Food and Bioprocess Technology, 7(7), 1928–1937. doi:10.1007/s11947-014-1298-6.

    Article  Google Scholar 

  • Sánchez-Moreno, C., Plaza, L., Elez-Martínez, P., De Ancos, B., Martín-Belloso, O., & Cano, M. P. (2005). Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. Journal of Agricultural and Food Chemistry, 53(11), 4403–4409. doi:10.1021/jf048839b.

    Article  Google Scholar 

  • Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., … Griffin, P. M. (2011). Foodborne Illness Acquired in the United States—Major Pathogens. Emerging Infectious Diseases, 17(1), 7. doi:10.3201/eid1701.P11101.

  • Schnabel, U., Andrasch, M., Weltmann, K. D., & Ehlbeck, J. (2014). Inactivation of vegetative microorganisms and Bacillus atrophaeus endospores by reactive nitrogen species (RNS). Plasma Processes and Polymers, 11(2), 110–116. doi:10.1002/ppap.201300072.

    Article  CAS  Google Scholar 

  • Shi, H., Ileleji, K., Stroshine, R. L., Keener, K., & Jensen, J. L. (2017). Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food and Bioprocess Technology, 1–11. doi:10.1007/s11947-017-1873-8.

  • Shi, X. M., Zhang, G. J., Wu, X. L., Li, Y. X., Ma, Y., & Shao, X. J. (2011). Effect of low-temperature plasma on microorganism inactivation and quality of freshly squeezed orange juice. IEEE Transactions on Plasma Science, 39(7), 1591–1597. doi:10.1109/TPS.2011.2142012.

    Article  CAS  Google Scholar 

  • Stoffels, E., Sakiyama, Y., & Graves, D. B. (2008). Cold atmospheric plasma: charged species and their interactions with cells and tissues. IEEE Transactions on Plasma Science, 36(4), 1441–1457. doi:10.1109/TPS.2008.2001084.

    Article  CAS  Google Scholar 

  • Sureshkumar, A., Sankar, R., Mandal, M., & Neogi, S. (2010). Effective bacterial inactivation using low temperature radio frequency plasma. International Journal of Pharmaceutics, 396(1), 17–22. doi:10.1016/j.ijpharm.2010.05.045.

    Article  CAS  Google Scholar 

  • Surowsky, B., Bußler, S., & Schlüter, O. K. (2016). Chapter 7—cold plasma interactions with food constituents in liquid and solid food matrices. In: Cold plasma in food and agriculture (pp. 179–203). doi:10.1016/B978-0-12-801365-6.00007-X.

  • Surowsky, B., Schlüter, O., & Knorr, D. (2015). Interactions of non-thermal atmospheric pressure plasma with solid and liquid food systems: a review. Food Engineering Reviews, 7(2), 82–108. doi:10.1007/s12393-014-9088-5.

    Article  CAS  Google Scholar 

  • Takai, E., Kitano, K., Kuwabara, J., & Shiraki, K. (2012). Protein inactivation by low-temperature atmospheric pressure plasma in aqueous solution. Plasma Processes and Polymers, 9(1), 77–82. doi:10.1002/ppap.201100063.

    Article  CAS  Google Scholar 

  • Tappi, S., Berardinelli, A., Ragni, L., Dalla Rosa, M., Guarnieri, A., & Rocculi, P. (2014). Atmospheric gas plasma treatment of fresh-cut apples. Innovative Food Science & Emerging Technologies, 21, 114–122. doi:10.1016/j.ifset.2013.09.012.

    Article  CAS  Google Scholar 

  • Tiwari, B. K., Muthukumarappan, K., O’Donnell, C. P., & Cullen, P. J. (2008). Kinetics of freshly squeezed orange juice quality changes during ozone processing. Journal of Agricultural and Food Chemistry, 56(15), 6416–6422. doi:10.1021/jf800515e.

    Article  CAS  Google Scholar 

  • Tiwari, B. K., O’ Donnell, C. P., Muthukumarappan, K., & Cullen, P. J. (2009a). Ascorbic acid degradation kinetics of sonicated orange juice during storage and comparison with thermally pasteurised juice. LWT - Food Science and Technology, 42(3), 700–704. doi:10.1016/j.lwt.2008.10.009.

    Article  CAS  Google Scholar 

  • Tiwari, B. K., O’Donnell, C. P., & Cullen, P. J. (2009b). Effect of non thermal processing technologies on the anthocyanin content of fruit juices. Trends in Food Science & Technology, 20(3), 137–145. doi:10.1016/j.tifs.2009.01.058.

    Article  CAS  Google Scholar 

  • Ulmer, H. M., Gänzle, M. G., & Vogel, R. F. (2000). Effects of high pressure on survival and metabolic activity of Lactobacillus plantarum TMW1.460. Applied and Environmental Microbiology, 66(9), 3966–3973. doi:10.1128/AEM.66.9.3966-3973.2000.

    Article  CAS  Google Scholar 

  • US Food and Drug Administration (USFDA). (2001). Hazard analysis and critical point (HACCP); procedures for the safe and sanitary processing and importing of juice; final rule. Federal Register, 66, 6137–6202.

  • US Food and Drug Administration. (2016). CFR—Code of Federal Regulations Title 21. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=146.135 . http://doi.org/http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=146.135.

  • Van Gils, C. A. J., Hofmann, S., Boekema, B. K. H. L., Brandenburg, R., & Bruggeman, P. J. (2013). Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet. Journal of Physics D: Applied Physics, 46(17), 175203. doi:10.1088/0022-3727/46/17/175203.

    Article  Google Scholar 

  • Vervoort, L., Van der Plancken, I., Grauwet, T., Timmermans, R. A. H., Mastwijk, H. C., Matser, A. M., et al. (2011). Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice: part II: impact on specific chemical and biochemical quality parameters. Innovative Food Science & Emerging Technologies, 12(4), 466–477. doi:10.1016/j.ifset.2011.06.003.

    Article  CAS  Google Scholar 

  • Vikram, V. B., Ramesh, M. N., & Prapulla, S. G. (2005). Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods. Journal of Food Engineering, 69(1), 31–40. doi:10.1016/j.jfoodeng.2004.07.013.

    Article  Google Scholar 

  • Wan, Z., Chen, Y., Pankaj, S. K., & Keener, K. M. (2017). High voltage atmospheric cold plasma treatment of refrigerated chicken eggs for control of Salmonella enteritidis contamination on egg shell. LWT - Food Science and Technology, 76, 124–130. doi:10.1016/j.lwt.2016.10.051.

    Article  CAS  Google Scholar 

  • Xu, L., Sanders, S. M., Tao, B., Garner, A. L., & Keener, K. M. (2016). Assessment of efficacy and reactive gas species generation for orange juice decontamination using high voltage atmospheric cold plasma. In 2016 I.E. International Conference on Plasma Science (ICOPS) (pp. 1–1). IEEE. doi:10.1109/PLASMA.2016.7534231

  • Yepez, X. V., & Keener, K. M. (2016). High-voltage atmospheric cold plasma (HVACP) hydrogenation of soybean oil without trans-fatty acids. Innovative Food Science & Emerging Technologies, 38, 169–174. doi:10.1016/j.ifset.2016.09.001.

    Article  CAS  Google Scholar 

  • Ying, M. Q., Huagn, M. J, Ma, B. Z., & Ma, T. G. (2005). Stimulating effects of seed treatment by magnetized plasma on tomato growth and yield. Plasma Science and Technology, 7(6), 3143–3147. doi:10.1088/1009-0630/7/6/017.

  • Zhang, H., Xu, Z., Shen, J., Li, X., Ding, L., Ma, J., et al. (2015). Effects and mechanism of atmospheric-pressure dielectric barrier discharge cold plasma on lactate dehydrogenase (LDH) enzyme. Scientific Reports, 5, 10031. doi:10.1038/srep10031.

    Article  Google Scholar 

  • Ziuzina, D., Patil, S., Cullen, P. J., Keener, K. M., & Bourke, P. (2013). Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. Journal of Applied Microbiology, 114(3), 778–787. doi:10.1111/jam.12087.

    Article  CAS  Google Scholar 

  • Ziuzina, D., Patil, S., Cullen, P. J., Keener, K. M., & Bourke, P. (2014). Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiology, 42, 109–116. doi:10.1016/j.fm.2014.02.007.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Jeanette Jensen and Dr. Nikhil Mahnot from the Department of Food Science, Mr. Russell Brayfield from the School of Nuclear Engineering, and Dr. Hu Shi from the School of Agricultural and Biological Engineering at Purdue University for assistance with the HVACP system and optical absorption spectroscopy measurements and data analysis. We also gratefully acknowledge funding from the College of Agriculture at Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Allen L. Garner or Bernard Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Garner, A.L., Tao, B. et al. Microbial Inactivation and Quality Changes in Orange Juice Treated by High Voltage Atmospheric Cold Plasma. Food Bioprocess Technol 10, 1778–1791 (2017). https://doi.org/10.1007/s11947-017-1947-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1947-7

Keywords

Navigation