Skip to main content
Log in

Synthesis, characterization, and preparation of nickel nanoparticles decorated electrochemically reduced graphene oxide modified electrode for electrochemical sensing of diclofenac

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, nickel nanoparticles (NiNPs) and graphene oxide (GO) were synthesized and characterized independently using spectroscopic and microscopic characterization techniques. Then, a new glassy carbon electrode modified with electrochemically reduced graphene oxide decorated with nickel nanoparticles (NiNPs/ERGO/GCE) was constructed by electrodeposition. The novel platform, NiNPs/ERGO/GCE, was characterized using scanning electron microscopy (SEM) and cyclic voltammetry (CV). SEM analysis clearly revealed efficient incorporation of NiNPs into the graphene sheets on the surface of the electrode. The prepared platform was used for the determination of diclofenac (DIC). A significant enhancement in the peak current response for DIC was observed at the composite modified electrode compared to the unmodified electrode. The NiNPs/ERGO composite modified electrode demonstrated excellent square wave voltammetric response towards the determination of DIC in the working range of 0.250–125 μM. The limit of detection (LOD) and limit of quantification (LOQ) of the proposed method were found to be 0.09 and 0.30 μM, respectively. The sensor was validated successfully for real sample analysis in pharmaceutical formulation and human urine samples with good recovery results. The proposed sensor also displayed good repeatability, reproducibility, long-term stability, and selectivity towards potential interferents. Hence, it is a promising material for electrochemical sensing of diclofenac and other similar drugs and biologically active compounds in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Goyal RN, Chatterjee S, Rana ARS (2010) The effect of modifying an edge-plane pyrolytic graphite electrode with single-wall carbon nanotubes on its use for sensing diclofenac. Carbon 48(14):4136–4144

    Article  CAS  Google Scholar 

  2. Ensafi AA, Izadi M, Karimi-Maleh H (2013) Sensitive voltammetric determination of diclofenac using room-temperature ionic liquid-modified carbon nanotubes paste electrode. Ionics 19(1):137–144

    Article  CAS  Google Scholar 

  3. Afkhami A, Bahiraei A, Madrakian T (2016) Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium. Mater Sci Eng C 59:168–176

    Article  CAS  Google Scholar 

  4. Aguilar-Lira GY, Álvarez-Romero GA, Zamora-Suárez A, Palomar-Pardavé M, Rojas-Hernández A, Rodríguez-Ávila JA, Páez-Hernández ME (2017) New insights on diclofenac electrochemistry using graphite as working electrode. J Electroanal Chem 794:182–188

    Article  CAS  Google Scholar 

  5. Chethana BK, Basavanna S, Naik YA (2012) Voltammetric determination of diclofenac sodium using tyrosine modified carbon paste electrode. Ind Eng Chem Res 51(31):10287–10295

    Article  CAS  Google Scholar 

  6. Goyal RN, Chatterjee S, Agrawal B (2010) Electrochemical investigations of diclofenac at edge plane pyrolytic graphite electrode and its determination in human urine. Sensors Actuators B 145(2):743–748

    Article  CAS  Google Scholar 

  7. Karuppiah C, Cheemalapati S, Chen SM, Palanisamy S (2015) Carboxyl-functionalized graphene oxide-modified electrode for the electrochemical determination of nonsteroidal anti-inflammatory drug diclofenac. Ionics 21(1):231–238

    Article  CAS  Google Scholar 

  8. Shalauddin M, Akhter S, Bagheri S, Karim MSA, Kadri NA, Basirun WJ (2017) Immobilized copper ions on MWCNTS-Chitosan thin film: enhanced amperometric sensor for electrochemical determination of diclofenac sodium in aqueous solution. Int J Hydrog Energy 42(31):19951–19960

    Article  CAS  Google Scholar 

  9. Motoc S, Manea F, Iacob A, Martinez-Joaristi A, Pop A, Schoonman J (2016) Electrochemical selective and simultaneous detection of diclofenac and ibuprofen in aqueous solution using HKUST-1 metal-organic framework-carbon nanofiber composite electrode. Sensors 16(10):1719–1730

    Article  CAS  Google Scholar 

  10. Hassan KM, Hathoot AA, Ashour WFD, Abdel-Azzem M (2015) Electrochemical and analytical applications for NADH detection at glassy carbon electrode modified with nickel nanoparticles dispersed on poly 1,5-diaminonaphthalene. J Solid State Electrochem 19(4):1063–1072

    Article  CAS  Google Scholar 

  11. Guo M, Yu Y, Hu J (2017) Nickel nanoparticles for the efficient electrocatalytic oxidation of methanol in an alkaline medium. Electrocatalysis 8(4):392–398

    Article  CAS  Google Scholar 

  12. Zhang Y, Xiao X, Sun Y, Shi Y, Dai H, Ni P, Hu J, Li Z, Song Y, Wang L (2013) Electrochemical deposition of nickel nanoparticles on reduced graphene oxide film for nonenzymatic glucose sensing. Electroanalysis 25(4):959–966

    Article  CAS  Google Scholar 

  13. Ji Z, Wang Y, Yang J, Shen X, Yu Q, Kong L, Zhou H (2016) Reduced graphene oxide uniformly decorated with Co nanoparticles: facile synthesis, magnetic and catalytic properties. RSC Adv 6(109):107709–107716

    Article  CAS  Google Scholar 

  14. Long F, Zhang Z, Wang J, Yan L, Zhou B (2015) Cobalt-nickel bimetallic nanoparticles decorated graphene sensitized imprinted electrochemical sensor for determination of octylphenol. Electrochim Acta 168:337–345

    Article  CAS  Google Scholar 

  15. Wu SH, Chen DH (2003) Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J Colloid Interface Sci 259(2):282–286

    Article  CAS  PubMed  Google Scholar 

  16. Hummers WS, Offema RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  17. Singh MK, Agarwal A, Gopal R, Swarnkar RK, Kotnala RK (2011) Dumbbell shaped nickel nanocrystals synthesized by a laser induced fragmentation method. J Mater Chem 21(30):11074–11079

    Article  CAS  Google Scholar 

  18. Ogino I, Yokoyama Y, Iwamura S, Mukai SR (2014) Exfoliation of graphite oxide in water without sonication: bridging length scales from nanosheets to macroscopic materials. Chem Mater 26(10):3334–3339

    Article  CAS  Google Scholar 

  19. Emiru TF, Ayele DW (2017) Controlled synthesis, characterization and reduction of graphene oxide: a convenient method for large scale production. Egypt J Basic and Appl Sci 4:74–79

    Google Scholar 

  20. Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46(7):1112–1114

    Article  CAS  Google Scholar 

  21. Drewniak S, Muzyka R, Stolarczyk A, Pustelny T, Kotyczka-Moranska M, Setkiewicz M (2016) Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors 16(1):103–118

    Article  CAS  Google Scholar 

  22. Xu C, Shi X, Ji A, Shi L, Zhou C, Cu Y (2015) Fabrication and characteristics of reduced graphene oxide produced with different green reductants. PLoS One 10:144842–144856

    Google Scholar 

  23. Abdolhosseinzadeh S, Asgharzadeh H, Kim HS (2015) Fast and fully-scalable synthesis of reduced graphene oxide. Sci Rep 5(1):10160–10166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghanbari K, Hajheidari N (2015) Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using silver nanoparticles deposited on polypyrrole nanofibers. J Polym Res 22(8):152–160

    Article  CAS  Google Scholar 

  25. Dahal A, Batzill M (2014) Graphene–nickel interfaces: a review. Nanoscale 6(5):2548–2562

    Article  CAS  PubMed  Google Scholar 

  26. Maringa A, Mugadza T, Antunes E, Nyokong T (2013) Characterization and electrocatalytic behavior of glassy carbon electrode modified with nickel nanoparticles towards amitrole detection. J Electroanal Chem 700:86–92

    Article  CAS  Google Scholar 

  27. Li X, Zhong A, Wei S, Luo X, Liang Y, Zhu Q (2015) Polyelectrolyte functionalized gold nanoparticles-reduced graphene oxide nanohybrid for electrochemical determination of aminophenol isomers. Electrochim Acta 164:203–210

    Article  CAS  Google Scholar 

  28. Phelane L, Muya FN, Richards HL, Baker PGL, Iwuoha EI (2014) Polysulfone nanocomposite membranes with improved hydrophilicity. Electrochim Acta 128:326–335

    Article  CAS  Google Scholar 

  29. Liu W, Tanna VA, Yavitt BM, Dimitrakopoulos C, Winter HH (2015) Fast production of high-quality graphene via sequential liquid exfoliation. Appl Mater Interfaces 7(49):27027–27030

    Article  CAS  Google Scholar 

  30. Liu L, An M, Yang P, Zhang J (2015) Superior cycle performance and high reversible capacity of SnO/graphene composite as an anode material for lithium-ion batteries. Sci Rep 5:9095–9064

    Article  CAS  Google Scholar 

  31. Ji Z, Wang Y, Yu Q, Shen X, Li N, Ma H, Yang J, Wang J (2017) One-step thermal synthesis of nickel nanoparticles modified graphene sheets for enzymeless glucose detection. J Colloid Interface Sci 506:678–684

    Article  CAS  PubMed  Google Scholar 

  32. Lin Q, Wei Y, Liu W, Yu Y, Hu J (2017) Electrocatalytic oxidation of ethylene glycol and glycerol on nickel ion implanted-modified indium tin oxide electrode. Int J Hydrog Energy 42(2):1403–1411

    Article  CAS  Google Scholar 

  33. Chekin F, Bagheri S, Arof AK, Hamid SBA (2012) Preparation and characterization of Ni (II)/polyacrylonitrile and carbon nanotube composite modified electrode and application for carbohydrates electrocatalytic oxidation. J Solid State Electrochem 16(10):3245–3251

    Article  CAS  Google Scholar 

  34. Jafarian M, Forouzandeh F, Danaee I, Gobal F, Mahjani MG (2008) Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode. J Solid State Electrochem 13:1171–1179

    Article  CAS  Google Scholar 

  35. Ojani R, Raoof JB, Norouzi B (2010) Performance of glucose electrooxidation on Ni–Co composition dispersed on the poly (isonicotinic acid) (SDS) film. J Solid State Electrochem 15:1139–1147

    Article  CAS  Google Scholar 

  36. Wang L, Tang Y, Wang L, Zhu H, Meng X, Chen Y, Sun Y, Yang XJ, Wan P (2014) Fast conversion of redox couple on Ni (OH)2/C nanocomposite electrode for high-performance nonenzymatic glucose sensor. J Solid State Electrochem 19:851–860

    Article  CAS  Google Scholar 

  37. Yi W, Yang D, Chen H, Liu P, Tan J, Li H (2013) A highly sensitive nonenzymatic glucose sensor based on nickel oxide–carbon nanotube hybrid nanobelts. J Solid State Electrochem 18:899–908

    Article  CAS  Google Scholar 

  38. Goodarzian M, Khalilzade MA, Karimi F, Gupta VK, Keyvanfard M, Bagheri H, Fouladgar M (2014) Square wave voltammetric determination of diclofenac in liquid phase using a novel ionic liquid multiwall carbon nanotubes paste electrode. J Mol Liq 197:114–119

    Article  CAS  Google Scholar 

  39. Sarhangzadeh K, Khatami AA, Jabbari M, Bahari S (2013) Simultaneous determination of diclofenac and indomethacin using a sensitive electrochemical sensor based on multiwalled carbon nanotube and ionic liquid nanocomposite. J Appl Electrochem 43(12):1217–1224

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the University of the Western Cape, Department of Chemistry, for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhagwan Singh Chandravanshi.

Electronic supplementary material

ESM 1

(DOCX 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mekassa, B., Baker, P.G.L., Chandravanshi, B.S. et al. Synthesis, characterization, and preparation of nickel nanoparticles decorated electrochemically reduced graphene oxide modified electrode for electrochemical sensing of diclofenac. J Solid State Electrochem 22, 3607–3619 (2018). https://doi.org/10.1007/s10008-018-4071-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4071-3

Keywords

Navigation