Skip to main content
Log in

Preparation and characterization of Ni(II)/polyacrylonitrile and carbon nanotube composite modified electrode and application for carbohydrates electrocatalytic oxidation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A nickel(II) into porous polyacrylonitrile–carbon nanotubes composite modified glassy carbon electrode (Ni/PAN-CNT/GCE) was fabricated by simple drop-casting and immersing technique. The unique electrochemical activity of Ni/PAN-CNT composite modified glassy carbon electrode was illustrated in 0.10 M NaOH using cyclic voltammetry. The Ni/PAN-CNT/GCE exhibits the characteristic of improved reversibility and enhanced current responses of the Ni(III)/Ni(II) couple compared with Ni/PAN/GCE and Ni/CNT/GCE. The results of electrochemical impedance spectroscopy and scanning electron microscopy indicated the successful immobilization for PAN-CNT composite film. Kinetic parameters such as the electron transfer coefficient, α, and rate constant, k s, of the electrode reaction were determined. Ni/PAN-CNT/GCE also shows good electrocatalytic activity toward the oxidation of carbohydrates (glucose, sucrose, fructose, and sorbitol). The electrocatalytic response showed a wide linear range (10–1,500, 12–3,200, 7–3,500, and 16–4,200 μM for glucose, sucrose, fructose, and sorbitol, respectively) as well as its experimental limit of detection can be achieved 6, 7, 5, and 11 μM for glucose, sucrose, fructose, and sorbitol, respectively. The modified electrode for carbohydrates determination is of the property of simple preparation, good stability, and high sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shoji E, Freund MS (2001) J Am Chem Soc 123:3383–3384

    Article  CAS  Google Scholar 

  2. You T, Niwa O, Chen Z, Hayashi K, Tomita M, Hirono S (2003) Anal Chem 75:5191–5196

    Article  CAS  Google Scholar 

  3. Wu L, Zhang X, Ju H (2007) Biosens Bioelectron 19:141–147

    Google Scholar 

  4. Meng L, Jin J, Yang G, Lu T, Zhang H, Cai C (2009) Anal Chem 81:7271–7280

    Article  CAS  Google Scholar 

  5. Newman JD, Turner APF (2005) Biosens Bioelectron 20:2435–2553

    Article  CAS  Google Scholar 

  6. Gopalan AI, Lee KP, Ragupathy D, Lee SH, Lee JW (2009) Biomaterials 30:5999–6005

    Article  CAS  Google Scholar 

  7. Wu X, Zhao F, Varcoe JR, Thumser AE, Avignone-Rossa C, Slade RCT (2009) Bioelectrochemistry 77:64–68

    Article  CAS  Google Scholar 

  8. Fu C, Yang W, Chen X, Evans DG (2009) Electrochem Commun 11:997–1000

    Article  CAS  Google Scholar 

  9. Zhang H, Meng Z, Wang Q, Zheng J (2011) Sensors and Actuators B 158:23–27

    Article  CAS  Google Scholar 

  10. Sheng Q, Luo K, Li L, Zheng J (2009) Bioelectrochemistry 7:246–253

    Article  Google Scholar 

  11. Yang L, Xiong H, Zhang X, Wang S, Zhang X (2011) Biosens Bioelectron 26:3801–3805

    Article  CAS  Google Scholar 

  12. Tasviri M, Rafiee-Pourb HA, Ghourchian H, Gholami MR (2011) J Mol Catal B: Enzym 68:206–210

    Article  CAS  Google Scholar 

  13. Mele MFL, Videla HA, Arvia AJ (1983) Bioelectrochem Bioenergy 10:239–288

    Article  Google Scholar 

  14. Vassilyev YB, Khazova OA, Nikolaeva NN (1985) J Electroanal Chem 196:105–125

    Article  Google Scholar 

  15. Hampson NA, Lee JB, Mac Donald KI (1971) J Electroanal Chem 32:165–173

    Article  CAS  Google Scholar 

  16. Luo MZ, Baldwin RP (1995) J Electroanal Chem 387:87–94

    Article  Google Scholar 

  17. Torto N, Ruzgas T, Gorton L (1999) J Electroanal 464:252–258

    Article  CAS  Google Scholar 

  18. Fleischmann M, Korinek K, Pletcher D (1971) J Electroanal Chem 31:31–39

    Google Scholar 

  19. Fleischmann M, Korinek K, Pletcher D (1972) J Chem Soc Perkin Trans 2:1396

    Google Scholar 

  20. Larew LA, Johnson DC (1989) J Electroanal Chem 262:167–182

    Article  CAS  Google Scholar 

  21. Matsumoto F, Harada M, Koura N, Uesugi S (2003) Electrochem Commun 5:42–46

    Article  CAS  Google Scholar 

  22. Parpot P, Kokoh KB, Beden B, Lamy C (1993) Electrochim Acta 38:1679–1683

    Article  CAS  Google Scholar 

  23. Parpot P, Nunes N, Bettencourt AP (2006) J Electroanal Chem 596:65–73

    Article  CAS  Google Scholar 

  24. Wang J, Taha Z (1990) Anal Chem 62:1413–1416

    Article  CAS  Google Scholar 

  25. Reim RE, Van Effen RM (1986) Anal Chem 58:3203–3207

    Article  CAS  Google Scholar 

  26. Berchmans S, Gomathi H, Rao GP (1995) J Electroanal Chem 394:267–270

    Article  Google Scholar 

  27. Vidotti M, Cerri CD, Carvalhal RF, Dias JC, Mendes RK, Cordoba de Torresi SI, Kubota LT (2009) J Electroanal Chem 636:18–23

    Article  CAS  Google Scholar 

  28. Buratti S, Brunetti B, Mannino S (2008) Talanta 76:454–457

    Article  CAS  Google Scholar 

  29. Marioli JM, Kuwana T (1993) Electroanalysis 5:11–15

    Article  CAS  Google Scholar 

  30. Yeo IH, Johnson DC (2001) J Electroanal Chem 495:110–119

    Article  CAS  Google Scholar 

  31. Santos LM, Baldwin RP (1987) Anal Chem 59:1766–1770

    Article  CAS  Google Scholar 

  32. Daniel MC, Astruc D (2004) Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  33. Burda C, Chen X, Narayan R, El-Sayed MA (2005) Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  34. Chen J, Bradhurst DH, Dou SX, Liu HK (1999) J Electrochem Soc 146:3606–3612

    Article  CAS  Google Scholar 

  35. Lo LX, Hwang BJ (1995) J Electrochem Soc 142:445–450

    Article  CAS  Google Scholar 

  36. Hutton LA, Vidotti M, Patel AN, Newton ME, Unwin RP, Macpherson JV (2011) J Phys Chem C 115:1649–1658

    Article  CAS  Google Scholar 

  37. Zheng H, Xue HG, Zhang YF, Shen ZQ (2002) Biosens Bioelectron 17:541–545

    Article  CAS  Google Scholar 

  38. Nau V, Nieman TA (1979) Anal Chem 51:424–428

    Article  CAS  Google Scholar 

  39. Reddy SM, Vadgama PM (1997) Anal Chim Acta 350:77–89

    Article  CAS  Google Scholar 

  40. Rubtsova MY, Kovba GV, Egorov AM (1998) Biosens Bioelectron 13:75–85

    Article  CAS  Google Scholar 

  41. Ying L, Kang ET, Neoh KG (2002) J Membr Sci 208:361–374

    Article  CAS  Google Scholar 

  42. Lin CC, Yang MC (2003) Biotechnol Prog 19:361–364

    Article  CAS  Google Scholar 

  43. Nie FQ, Xu ZK, Yang Q, Wu J, Wan LS (2004) J Mem Sci 235:147–153

    Article  CAS  Google Scholar 

  44. Shan D, He Y, Wang S, Xue H, Zheng H (2006) Anal Biochem 356:215–221

    Article  CAS  Google Scholar 

  45. Bhat AA, Pangarkar VG (2000) J Membr Sci 167:187–201

    Article  CAS  Google Scholar 

  46. Qiang S, Yaoting Y, Hongyin L, Klinkmann H (1997) Int J Artif Organs 20:119–124

    CAS  Google Scholar 

  47. Kim KH, Jo WH (2007) Macromolecules 40:3708–3713

    Article  CAS  Google Scholar 

  48. Lee JU, Huh J, Kim KH, Park C, Jo WH (2007) Carbon 45:1051–1057

    Article  CAS  Google Scholar 

  49. Wang M, Pramoda KP, Goh SH (2006) Carbon 44:613–617

    Article  CAS  Google Scholar 

  50. Park S, Huh JO, Kim NG, Kang SM, Lee KB, Hong SP (2008) Carbon 46:706–720

    Article  Google Scholar 

  51. Shamsipur M, Najafi M, Milani Hosseini MR (2010) Bioelectrochemistry 77:120–124

    Article  CAS  Google Scholar 

  52. Laviron E (1979) J Electroanal Chem 100:263–270

    Article  CAS  Google Scholar 

  53. Zhao C, Shao C, Li M, Jiao K (2007) Talanta 71:1769–1773

    Article  CAS  Google Scholar 

  54. Tominaga M, Shimazoe T, Nagashima M, Taniguchi I (2005) Electrochem Commun 7:189–193

    Article  CAS  Google Scholar 

  55. Mho S, Johnson DC (2001) J Electroanal Chem 500:524–532

    Article  CAS  Google Scholar 

  56. Proenca L, Lopes MIS, Fonseca I, Kokoh KB, Leger JM, Lamy C (1997) J Electroanal Chem 432:237–242

    Article  CAS  Google Scholar 

  57. Giilce H, Celebi S, Hzyijriik H, Ylldlz A (1995) J Electroanal Chem 397:217–223

    Article  Google Scholar 

  58. Bai Y, Sun Y, Sun C (2008) Biosens Bioelectron 24:579–585

    Article  CAS  Google Scholar 

  59. Chrysostome Ndamanisha J, Guo L (2009) Bioelectrochemistry 77:60–63

    Article  Google Scholar 

  60. Arvinte A, Sesay AM, Virtanen V (2011) Talanta 84:180–186

    Article  CAS  Google Scholar 

  61. Bisenberger M, Bräuchle C, Hampp N (1995) Sensors and Actuators B 28:181–189

    Article  Google Scholar 

  62. Saidman SB, Lobo-Castanon MJ, Miranda-Ordieres AJ, Tunon-Blanco P (2000) Anal Chim Acta 424:45–50

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fereshteh Chekin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chekin, F., Bagheri, S., Arof, A.K. et al. Preparation and characterization of Ni(II)/polyacrylonitrile and carbon nanotube composite modified electrode and application for carbohydrates electrocatalytic oxidation. J Solid State Electrochem 16, 3245–3251 (2012). https://doi.org/10.1007/s10008-012-1767-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1767-7

Keywords

Navigation