Skip to main content
Log in

Fast conversion of redox couple on Ni(OH)2/C nanocomposite electrode for high-performance nonenzymatic glucose sensor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

To pursue high performance for nonenzymatic glucose sensor, fast conversion of redox couple (Ni(OH)2↔NiOOH: NiII/NiIII) was established on Ni(OH)2 nanoparticles modified carbon (Ni(OH)2/C) composite electrode coupling with concentrated hydroxide electrolyte. The electrode was prepared by in situ precipitation of nano-Ni(OH)2 on carbon and then treated by cyclic voltammetry. Cyclic voltammetry was also used to identify the extremely high conversion rate of NiII/NiIII on the prepared composite electrode. Continuous cyclic voltammetry method with increasing the concentration of glucose on each cycle step by step was employed to promptly determine linear range and appropriate potential for glucose detection in 0.1, 1, and 7 M KOH electrolyte. The amperometric measurement under the optimized condition (0.28 V vs. saturated calomel electrode (SCE) in 7 M KOH) showed that the Ni(OH)2/C composite electrode exhibits a sensitivity of 1004.6 μA mM−1 cm−2 in a wide linear range from 1 μM to 15 mM (R = 0.9999). What is more, favorable selectivity, reproducibility, and stability for glucose detection were also obtained. These performances indicated that the proposed Ni(OH)2/C nanocomposite sensor with fast conversion of redox couple is a promising nonenzymatic glucose sensor.

The conversion of Ni(OH)2↔NiOOH, which is the key reaction for nickel-based glucose sensor, was accelerated on highly active Ni(OH)2/carbon nanocomposite electrode in concentrated alkali electrolyte. The sensitivity, linear range, and proper potential for glucose detection were promptly identified by the continuous cyclic voltammetry with increasing C glucose in steps. The nanocomposite electrode also showed the extended linear range of glucose detection with high sensitivity in amperometric measurement

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cash KJ, Clark HA (2010) Trends Mol Med 16:584–593

    Article  CAS  Google Scholar 

  2. Terry LA, White SF, Tigwell LJ (2005) J Agric Food Chem 53:1309–1316

    Article  CAS  Google Scholar 

  3. Wei H, Wang E (2008) Anal Chem 80:2250–2254

    Article  CAS  Google Scholar 

  4. Wang J (2008) Chem Rev 108:814–825

    Article  CAS  Google Scholar 

  5. Heller A, Feldman B (2008) Chem Rev 108:2482–2505

    Article  CAS  Google Scholar 

  6. Clark LC, Lyons C (1962) Ann N Y Acad Sci 102:29–45

    Article  CAS  Google Scholar 

  7. Williams DL, Doig AR, Korosi A (1970) Anal Chem 42:118–121

    Article  CAS  Google Scholar 

  8. Kim DM, Kim MY, Reddy SS, Cho J, Cho CH, Jung S, Shim YB (2013) Anal Chem 85:11643–11649

    Article  CAS  Google Scholar 

  9. Liu M, Liu R, Chen W (2013) Biosens Bioelectron 45:206–212

    Article  CAS  Google Scholar 

  10. Tehrani RMA, Ab Ghani S (2012) Biosens Bioelectron 38:278–283

    Article  CAS  Google Scholar 

  11. Park S, Boo H, Chung TD (2006) Anal Chim Acta 556:46–57

    Article  CAS  Google Scholar 

  12. Choi T, Kim SH, Lee CW, Kim H, Choi SK, Kim SH, Kim E, Park J, Kim H (2015) Biosens Bioelectron 63:325–330

    Article  CAS  Google Scholar 

  13. Badhulika S, Paul RK, Rajesh, Terse T, Mulchandani A (2014) Electroanalysis 26:103–108

    Article  CAS  Google Scholar 

  14. Han L, Zhang S, Han L, Yang D-P, Hou C, Liu A (2014) Electrochim Acta 138:109–114

    Article  CAS  Google Scholar 

  15. Chen DJ, Lu YH, Wang AJ, Feng JJ, Huo TT, Dong WJ (2012) J Solid State Electrochem 16:1313–1321

    Article  CAS  Google Scholar 

  16. Wang J, Thomas DF, Chen A (2008) Anal Chem 80:997–1004

    Article  CAS  Google Scholar 

  17. Li Y, Niu X, Tang J, Lan M, Zhao H (2014) Electrochim Acta 130:1–8

    Article  CAS  Google Scholar 

  18. Yuan M, Liu A, Zhao M, Dong W, Zhao T, Wang J, Tang W (2014) Sensors Actuators B Chem 190:707–714

    Article  CAS  Google Scholar 

  19. Li H, Guo C-Y, Xu C-L (2015) Biosens Bioelectron 63:339–346

    Article  CAS  Google Scholar 

  20. Wolfart F, Maciel A, Nagata N, Vidotti M (2013) J Solid State Electrochem 17:1333–1338

    Article  CAS  Google Scholar 

  21. Dong XC, Xu H, Wang XW, Huang YX, Chan-Park MB, Zhang H, Wang LH, Huang W, Chen P (2012) ACS Nano 6:3206–3213

    Article  CAS  Google Scholar 

  22. Chen J, Zhang WD, Ye JS (2008) Electrochem Commun 10:1268–1271

    Article  CAS  Google Scholar 

  23. Wang G, Lu X, Zhai T, Ling Y, Wang H, Tong Y, Li Y (2012) Nanoscale 4:3123–3127

    Article  CAS  Google Scholar 

  24. Yang YJ, Li W, Chen X (2012) J Solid State Electrochem 16:2877–2881

    Article  CAS  Google Scholar 

  25. Yi W, Yang D, Chen H, Liu P, Tan J, Li H (2014) J Solid State Electrochem 18:899–908

    Article  CAS  Google Scholar 

  26. Meng Z, Sheng Q, Zheng J (2012) J Iran Chem Soc 9:1007–1014

    Article  CAS  Google Scholar 

  27. Zhang X, Gu A, Wang G, Huang Y, Ji H, Fang B (2011) Analyst 136:5175–5180

    Article  CAS  Google Scholar 

  28. El-Refaei SM, Saleh MM, Awad MI (2014) J Solid State Electrochem 18:5–12

    Article  CAS  Google Scholar 

  29. Qiao N, Zheng J (2012) Microchim Acta 177:103–109

    Article  CAS  Google Scholar 

  30. Guo C, Wang Y, Zhao Y, Xu C (2013) Anal Methods 5:1644–1647

    Article  CAS  Google Scholar 

  31. Kiani MA, Tehrani MA, Sayahi H (2014) Anal Chim Acta 839:26–33

    Article  CAS  Google Scholar 

  32. Kung CW, Cheng YH, Ho KC (2014) Sensors Actuators B Chem 204:159–166

    Article  CAS  Google Scholar 

  33. Tian H, Jia M, Zhang M, Hu J (2013) Electrochim Acta 96:285–290

    Article  CAS  Google Scholar 

  34. Zhang Y, Xu F, Sun Y, Shi Y, Wen Z, Li Z (2011) J Mater Chem 21:16949–16954

    Article  CAS  Google Scholar 

  35. Mu Y, Jia D, He Y, Miao Y, Wu HL (2011) Biosens Bioelectron 26:2948–2952

    Article  CAS  Google Scholar 

  36. Yuan B, Xu C, Liu L, Zhang Q, Ji S, Pi L, Zhang D, Huo Q (2013) Electrochim Acta 104:78–83

    Article  CAS  Google Scholar 

  37. Kang X, Mai Z, Zou X, Cai P, Mo J (2007) Anal Biochem 363:143–150

    Article  CAS  Google Scholar 

  38. Abdel Hameed RM (2013) Biosens Bioelectron 47:248–257

    Article  CAS  Google Scholar 

  39. Lv S, Suo H, Wang J, Wang Y, Zhao C, Xing S (2012) Colloids Surf A 396:292–298

    Article  CAS  Google Scholar 

  40. Wang H, Casalongue HS, Liang Y, Dai H (2010) J Am Chem Soc 132:7472–7477

    Article  CAS  Google Scholar 

  41. Shamsipur M, Najafi M, Hosseini M-RM (2010) Bioelectrochemistry 77:120–124

    Article  CAS  Google Scholar 

  42. Luo Z, Yin S, Wang K, Li H, Wang L, Xu H, Xia J (2012) Mater Chem Phys 132:387–394

    Article  CAS  Google Scholar 

  43. Hsu YW, Hsu TK, Sun CL, Nien YT, Pu NW, Ger MD (2012) Electrochim Acta 82:152–157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the support from the National Natural Science Foundation of China (Nos. 51374016 and 51102011) and the Fundamental Research Funds for the Central Universities of China (Nos. ZY1415 and JD1313). The authors thank Prof. Xiaoguang Liu and Prof. Yinjian Niu for the important discussions and suggestions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Tang or Pingyu Wan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Tang, Y., Wang, L. et al. Fast conversion of redox couple on Ni(OH)2/C nanocomposite electrode for high-performance nonenzymatic glucose sensor. J Solid State Electrochem 19, 851–860 (2015). https://doi.org/10.1007/s10008-014-2689-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2689-3

Keyword

Navigation