Skip to main content

Advertisement

Log in

Computational investigations on acceptor substituent influence of metal-free efficient chromophores for optoelectronic properties

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this study, the computational studies of the PO3H2, CONHOH, and SO2H (A1–A3) molecules were investigated for optoelectronic applications on the basis of tetrahydroquinoline (C1-1) dye. Besides, a detailed calculation of the molecular structures, energy levels, driving force of injection, regeneration, non-linear optical (NLO) property, chemical hardness, excitation binding energy, light-harvesting efficiency (LHE), absorption spectra, and photovoltaic (PV) parameters were all discussed in details using density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The optoelectronic properties of C1-1-based A1–A3 molecules are originated to be tuned by changing the position of the acceptor. To get a maximum absorption spectrum of C1-1, Becke’s three-parameter and Lee–Yang–Parr (B3LYP), Coulomb-attenuating method-B3LYP (CAM-B3LYP), and Head-Gordon model (ωB97XD) were used for the TD-DFT method. Results reveal that the TD-ɷB97XD and 6-31G(d) combined functionals were provided reliable effects to the C1-1. Therefore, absorption spectra of the A1–A3 dyes were followed by the TD-ɷB97XD/6-31G(d) techniques. The designed A1 (PO3H2) dye displayed a smaller energy gap and red-shifted broadened spectra than the other dyes and C1-1 can be utilized to get a better PV properties. In addition, NLO properties of the A1–A3 chromophores were calculated by the polarizability and first-order hyperpolarizability. Consequently, A1 dye has a superior value of the NLO activity. This study will deliver a valuable reference to the upcoming molecular proposal of tetrahydroquinoline dyes for optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the data and electronic materials available for Gaussian program.

References

  1. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  Google Scholar 

  2. Hagfeldt A, Grätzel M (2000) Molecular photovoltaics. Acc Chem Res 33(5):269–277

    Article  CAS  PubMed  Google Scholar 

  3. Hagfeldt A, Boschloo G, Sun LC, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663

    Article  CAS  PubMed  Google Scholar 

  4. Li JY, Chen CY, Ho WC, Chen SH, Wu CG (2012) Unsymmetrical squaraines incorporating quinoline for near infrared responsive dye-sensitized solar cells. Org Lett 14(21):5420–5423

    Article  CAS  PubMed  Google Scholar 

  5. Li H, Koh TM, Hagfeldt A, Grätzel M, Mhaisalkar SG, Grimsdale AC (2013) New donor-π-acceptor sensitizers containing 5H-[1, 2, 5] thiadiazolo [3, 4-f] isoindole-5, 7 (6H)-dione and 6 H-pyrrolo [3, 4-g] quinoxaline-6, 8 (7 H)-dione units. Chem Commun 49(24):2409–2411

    Article  CAS  Google Scholar 

  6. Wang Z, Liang M, Wang L, Hao Y, Wang C, Sun Z, Xue S (2013) New triphenylamine organic dyes containing dithieno [3, 2-b: 2′, 3′-d] pyrrole (DTP) units for iodine-free dye-sensitized solar cells. Chem Commun 49(51):5748–5750

    Article  CAS  Google Scholar 

  7. Kloo L (2013) On the early development of organic dyes for dye- sensitized solar cells. Chem Commun 49(59):6580–6583

    Article  CAS  Google Scholar 

  8. Kim B-G, Chung K, Kim J (2013) Molecular design principle of all-organic dyes for dye-sensitized solar cells. Chem Eur J 19:5220–5230

    Article  CAS  PubMed  Google Scholar 

  9. Liang M, Chen J (2013) Arylamine organic dyes for dye-sensitized solar cells. Chem Soc Rev 42(8):3453–3488

    Article  CAS  PubMed  Google Scholar 

  10. Damaceanu MD, Mihaila M, Constantin CP, Chisca S, Serban BC, Diaconu C, Buiu O, Pavelescu EM, Kusko M (2015) A new sensitizer containing dihexyloxy-substituted triphenylamine as donor and a binary conjugated spacer for dye-sensitized solar cells. RSC Adv 5(66):53687–53699

    Article  CAS  Google Scholar 

  11. Kar S, Roy JK, Leszczynski J (2017) In silico designing of power conversion efficient organic lead dyes for solar cells using todays innovative approaches to assure renewable energy for future. NPJ Comput Mater 3(1):22

    Article  Google Scholar 

  12. Zhang J, Li HB, Zhang JZ, Wu Y, Geng Y, Fu Q, Su ZM (2013) A promising anchor group for efficient organic dye sensitized solar cells with iodine-free redox shuttles: a theoretical evaluation. J Mater Chem A 1(44):14000–14007

    Article  CAS  Google Scholar 

  13. Hoff DA, da Silva R, Rego LG (2012) Coupled electron-hole quantum dynamics on D-π-A dye-sensitized TiO2 semiconductors. J Phys Chem C 116(40):21169–21178

    Article  CAS  Google Scholar 

  14. Li W, Wang J, Chen J, Bai FQ, Zhang HX (2014) Theoretical investigation and design of high-efficiency dithiafulvenyl-based sensitizers for dye-sensitized solar cells: the impacts of elongating π-spacers and rigidifying dithiophene. Phys Chemi Chem Phys 16(20):9458–9468

    Article  CAS  Google Scholar 

  15. Feng J, Jiao Y, Ma W, Nazeeruddin MK, Grätzel M, Meng S (2013) First principles design of dye molecules with ullazine donor for dye sensitized solar cells. J Phys Chem C 117(8):3772–3778

    Article  CAS  Google Scholar 

  16. Meng S, Kaxiras E, Nazeeruddin MK, Grätzel M (2011) Design of dye acceptors for photovoltaics from first-principles calculations. J Phys Chem C 115(18):9276–9282

    Article  CAS  Google Scholar 

  17. Arunkumar A, Prakasam M, Anbarasan PM (2017) Influence of donor substitution at D-π-A architecture in efficient sensitizers for dye-sensitized solar cells: first principle study. Bull Mater Sci 40(7):1389–1396

    Article  CAS  Google Scholar 

  18. Chen R, Yang X, Tian H, Wang X, Hagfeldt A, Sun L (2007) Effect of tetrahydroquinoline dyes structure on the performance of organic dye-sensitized solar cells. Chem Mater 19(16):4007–4015

    Article  CAS  Google Scholar 

  19. Becke AD (1993) Density-functional thermochemistry III The role of exact exchange. J Chem Phys 96(3):5648–5652

    Article  Google Scholar 

  20. Arunkumar A, Shanavas S, Anbarasan PM (2018) First-principles study of efficient phenothiazine-based D-π-A organic sensitizers with various spacers for DSSCs. J Comput Electron 17(4):1410–1420

    Article  CAS  Google Scholar 

  21. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24(6):669–681

    Article  CAS  PubMed  Google Scholar 

  22. Arunkumar A, Deepana M, Shanavas S, Acevedo R, Anbarasan PM (2019) Computational investigation on series of metal-free sensitizers in tetrahydroquinoline with different π-spacer groups for DSSCs. ChemistrySelect 4(14):4097–4104

    Article  CAS  Google Scholar 

  23. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57

    Article  CAS  Google Scholar 

  24. Lin YS, Li GD, Mao SP, Chai JD (2012) Long-range corrected hybrid density functionals with improved dispersion corrections. J Chem theory Comput 9(1):263–272

    Article  PubMed  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R,Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RJ, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Gaussian Inc., Wallingford

  26. O’boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29(5):839–845

    Article  PubMed  Google Scholar 

  27. Arunkumar A, Anbarasan PM (2018) Highly efficient organic indolocarbazole dye in different acceptor units for optoelectronic applications - a first principle study. Struct Chem 29(4):967–976

    Article  Google Scholar 

  28. Arunkumar A, Shanavas S, Acevedo R, Anbarasan PM (2020) Quantum chemical investigation of modified coumarin-based organic efficient sensitizers for optoelectronic applications. Eur Phys J D 74(2):1–8

    Article  Google Scholar 

  29. Zhang G, Bai Y, Li R, Shi D, Wenger S, Zakeeruddin SM, Grätzel M, Wang P (2009) Employ a bisthienothiophene linker to construct an organic chromophore for efficient and stable dye-sensitized solar cells. Energy Environ Sci 2(1):92–95

    Article  CAS  Google Scholar 

  30. Gadisa A, Svensson M, Andersson MR, Inganäs O (2004) Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative. Appl Phys Lett 84(9):1609–1611

    Article  CAS  Google Scholar 

  31. Zhang J, Li HB, Sun SL, Geng Y, Wu Y, Su ZM (2012) Density functional theory characterization and design of high-performance diarylamine-fluorene dyes with different π spacers for dye-sensitized solar cells. J Mater Chem 22(2):568–576

    Article  CAS  Google Scholar 

  32. Chen SL, Yang LN, Li ZS (2013) How to design more efficient organic dyes for dye-sensitized solar cells? Adding more sp2-hybridized nitrogen in the triphenylamine donor. J Power Sources 223:86–93

    Article  CAS  Google Scholar 

  33. Peach MJ, Benfield P, Helgaker T, Tozer DJ (2008) Excitation energies in density functional theory: an evaluation and a diagnostic test. J Chem Phys 128(4):044118

    Article  PubMed  Google Scholar 

  34. Fitri A, Benjelloun AT, Benzakour M, Mcharfi M, Hamidi M, Bouachrine M (2014) Theoretical design of thiazolothiazole-based organic dyes with different electron donors for dye-sensitized solar cells. Spectrochim Acta A Mol Biomol Spectrosc 132:232–238

    Article  CAS  PubMed  Google Scholar 

  35. Arunkumar A, Anbarasan PM (2019) Optoelectronic properties of a simple metal-free organic sensitizer with different spacer groups: quantum chemical assessments. J Electron Mater 48(3):1522–1530

    Article  CAS  Google Scholar 

  36. Islam A, Sugihara H, Arakawa H (2003) Molecular design of ruthenium (II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells. J Photochem Photobiol A Chem 158(2–3):131–138

    Article  CAS  Google Scholar 

  37. Li M, Kou L, Diao L, Zhang Q, Li Z, Wu Q, Lu W, Pan D, Wei Z (2015) Theoretical study of WS-9-based organic sensitizers for unusual Vis/NIR absorption and highly efficient dye-sensitized solar cells. J Phys Chem C 119(18):9782–9790

    Article  CAS  Google Scholar 

  38. Sang-aroon W, Saekow S, Amornkitbamrung V (2012) Density functional theory study on the electronic structure of Monascus dyes as photosensitizer for dye-sensitized solar cells. J Photochem Photobiol A Chem 236:35–40

    Article  CAS  Google Scholar 

  39. Li Y, Pullerits T, Zhao M, Sun M (2011) Theoretical characterization of the PC60BM: PDDTT model for an organic solar cell. J Phys Chem C 115(44):21865–21873

    Article  CAS  Google Scholar 

  40. Nithya R, Senthilkumar K (2014) Theoretical studies on the quinoidal thiophene based dyes for dye sensitized solar cell and NLO applications. Phys Chem Chem Phys 16(39):21496–21505

    Article  CAS  PubMed  Google Scholar 

  41. Senthilkumar P, Nithya C, Anbarasan PM (2014) Quantum chemical investigations on the effect of dodecyloxy chromophore in 4-amino stilbene sensitizer for DSSCs. Spectrochim Acta Part A Mol Biomol Spectrosc 122:15–21

    Article  CAS  Google Scholar 

  42. Zhang R, Du B, Sun G, Sun Y (2010) Experimental and theoretical studies on o-, m-and p-chlorobenzylideneaminoantipyrines. Spectrochim Acta Part A Mol Biomol Spectrosc 75(3):1115–1124

    Article  Google Scholar 

  43. Lee MJ, Balanay MP, Kim DH (2012) Molecular design of distorted push-pull porphyrins for dye-sensitized solar cells. Theor Chem Acc 131(9):1269

    Article  Google Scholar 

  44. Janjua MR, Khan MU, Bashir B, Iqbal MA, Song Y, Naqvi SA, Khan ZA (2012) Effect of π-conjugation spacer (CC) on the first hyperpolarizabilities of polymeric chain containing polyoxometalate cluster as a side-chain pendant: a DFT study. Comput Theor Chem 994:34–40

    Article  CAS  Google Scholar 

  45. Ayers PW, Parr RG (2008) Local hardness equalization: exploiting the ambiguity. J Chem Phys 128(18):184108

    Article  PubMed  Google Scholar 

  46. Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924

    Article  CAS  Google Scholar 

  47. Dev P, Agrawal S, English NJ (2012) Determining the appropriate exchange-correlation functional for time-dependent density functional theory studies of charge-transfer excitations in organic dyes. J Chem Phys 136(22):224301

    Article  PubMed  Google Scholar 

Download references

Funding

Funding was received from Research Center for Advanced Materials Science (RCAMS), King Khalid University, Saudi Arabia, for funding this work, Grant/Award Number: RCAMS/KKU/014-22.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors (Arunkumar Ammasi, Anbarasan Ponnusamy Munusamy, and Mohd Shkir).

Corresponding author

Correspondence to Arunkumar Ammasi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent for publication

Not applicable.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 34 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammasi, A., Munusamy, A.P. & Shkir, M. Computational investigations on acceptor substituent influence of metal-free efficient chromophores for optoelectronic properties. J Mol Model 28, 349 (2022). https://doi.org/10.1007/s00894-022-05346-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05346-x

Keywords

Navigation