Skip to main content
Log in

Electronic structure and physicochemical properties of the metal and semimetal oxide nanoclusters

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Clusters are physical entities composed of a few to thousands of atoms with capabilities to develop novel materials, like cluster-assembled materials. In this sense, knowing the electronic structure and physicochemical properties of the isolated clusters can be useful to understand how they interact with other chemical species by intermolecular forces, as free, embedded, and saturated clusters, and by intramolecular forces, acting as support clusters. In this way, in the present work, the electronic structure and physicochemical properties of metal oxide nanoclusters (MgO, Al2O3, SiO2, and TiO2) were studied by highly correlated molecular quantum chemistry methods. Through the electronic state’s characterization, a semiconductor aspect was found for the titania oxide nanocluster (Te < 0.8 eV) while the other agglomerates showed a characteristic of insulating material (Te > 3.3 eV). From the stability index, the following stability order can be characterized: (SiO2)4 > (Al2O3)4 > (MgO)4 > (TiO2)3. Initial information of intermolecular and intramolecular forces caused by the studied clusters was calculated through the relative electrophilicity index, which classified the (MgO)4 and (TiO2)3 clusters as the more reactive ones, in which the (MgO)4 cluster was identified as a nucleophilic species, while the (TiO2)3 cluster as an electrophilic molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during the current study are available in the Supplementary Information.

References

  1. Jena P, Castleman AW (2006) Clusters: a bridge across the disciplines of physics and chemistry. Proc Natl Acad Sci U S A 103(28):10560–10569. https://doi.org/10.1073/pnas.0601782103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Castleman AW Jr, Khanna SN (2009) Superatoms: building blocks of new materials. J Phys Chem C 113(7):2664–2675. https://doi.org/10.1016/S1571-0785(07)12010-1

    Article  CAS  Google Scholar 

  3. Jena P, Sun Q (2018) Super atomic clusters: design rules and potential for building blocks of materials. Chem Rev 118(11):5755–5870. https://doi.org/10.1021/acs.chemrev.7b00524

    Article  CAS  PubMed  Google Scholar 

  4. Claridge SA, Castleman AW, Khanna SN, Murray CB, Sen A, Weiss PS (2009) Cluster-assembled materials. ACS Nano 3(2):244–255. https://doi.org/10.1021/nn800820e

    Article  CAS  PubMed  Google Scholar 

  5. Qian M, Reber AC, Ugrinov A, Chaki NK, Mandal S, Saavedra HM, Khanna SN, Sen A, Weiss PS (2010) Cluster-assembled materials: toward nanomaterials with precise control over properties. ACS Nano 4(1):235–240

    Article  CAS  Google Scholar 

  6. Perez A, Melinon P, Dupuis V, Jensen P, Prevel B, Tuaillon J, Bardotti L, Martet C, Treilleux M, Broyer M, Pellarin M, Vaille JL, Palpant B, Lerme J (1997) Cluster assembled materials: a novel class of nanostructured solids with original structures and properties. J Phys D Appl Phys 30(5):709–721. https://doi.org/10.1088/0022-3727/30/5/003

    Article  CAS  Google Scholar 

  7. Liu Q, Wang X (2021) Cluster-assembled materials: ordered structures with advanced properties. InfoMat 3(8):854–868. https://doi.org/10.1002/inf2.12213

    Article  CAS  Google Scholar 

  8. Kim KS, Tarakeshwar P, Lee HM (2005) Clusters to functional molecules, nanomaterials, and molecular devices: theoretical exploration. In: Theory Appl Comput Chem. Elsevier, Amsterdam, pp 963–993. https://doi.org/10.1016/B978-044451719-7/50077-9

  9. Jug K, Bredow T (2004) Models for the treatment of crystalline solids and surfaces. J Comput Chem 25(13):1551–1567. https://doi.org/10.1002/jcc.20080

    Article  CAS  PubMed  Google Scholar 

  10. Evarestov RA, Bredow T, Jug K (2001) Connection between slab and cluster models for crystalline surfaces. Phys Solid State 43(9):1774–1782. https://doi.org/10.1134/1.1402239

    Article  CAS  Google Scholar 

  11. Deák P (2000) Choosing models for solids. Phys status solidi 217(1):9–21. https://doi.org/10.1002/(SICI)1521-3951(200001)217:1%3c9::AID-PSSB9%3e3.0.CO;2-6

    Article  Google Scholar 

  12. Johnson GE, Mitrić R, Bonačić-Koutecký V, Castleman AW (2009) Clusters as model systems for investigating nanoscale oxidation catalysis. Chem Phys Lett 475(1–3):1–9. https://doi.org/10.1016/j.cplett.2009.04.003

    Article  CAS  Google Scholar 

  13. Wojciechowski KF (1966) Theory of chemisorption on metal surfaces. Proc Phys Soc 87(2):583–585. https://doi.org/10.1088/0370-1328/87/2/129

    Article  CAS  Google Scholar 

  14. Czekaj I, Wambach J, Kröcher O (2009) Modelling catalyst surfaces using DFT cluster calculations. Int J Mol Sci 10(10):4310–4329. https://doi.org/10.3390/ijms10104310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu L, Corma A (2018) Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 118:4981–5079. https://doi.org/10.1021/acs.chemrev.7b00776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Z, Ji S, Liu Y, Cao X, Tian S, Chen Y, Niu Z, Li Y (2020) Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites. Chem Rev 120(2):623–682. https://doi.org/10.1021/acs.chemrev.9b00311

    Article  CAS  PubMed  Google Scholar 

  17. Gao C, Low J, Long R, Kong T, Zhu J, Xiong, Y (2020) Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem Rev 120(21):1275–12216. https://doi.org/10.1021/acs.chemrev.9b00840

  18. Vajda S, White MG (2015) Catalysis applications of size-selected cluster deposition. ACS Catal 5(12):7152–7176. https://doi.org/10.1021/acscatal.5b01816

    Article  CAS  Google Scholar 

  19. Gross E, Somorjai GA (2013) The impact of electronic charge on catalytic reactivity and selectivity of metal-oxide supported metallic nanoparticles. Top Catal 56(12):1049–1058. https://doi.org/10.1007/s11244-013-0069-3

    Article  CAS  Google Scholar 

  20. Ma Z, Zaera F (2006) Heterogeneous catalysis by metals. In: Encyclopedia of Inorganic Chemistry. John Wiley & Sons, Ltd., UK, pp 1–17. https://doi.org/10.1002/0470862106.ia084

  21. Haertelt M, Fielicke A, Meijer G, Kwapien K, Sierka M, Sauer J (2012) Structure determination of neutral MgO clusters—hexagonal nanotubes and cages. Phys Chem Chem Phys 14(8):2849. https://doi.org/10.1039/c2cp23432g

    Article  CAS  PubMed  Google Scholar 

  22. Hong L, Wang H, Cheng J, Tang L, Zhao J (2012) Lowest-energy structures of (MgO)n (N=2–7) clusters from a topological method and first-principles calculations. Comput Theor Chem 980:62–67. https://doi.org/10.1016/j.comptc.2011.11.015

    Article  CAS  Google Scholar 

  23. Malliavin M-J, Coudray C (1997) Ab initio calculations on (MgO)n, (CaO)n, and (NaCl)n clusters (n =1–6). J Chem Phys 106(6):2323–2330. https://doi.org/10.1063/1.474110

    Article  CAS  Google Scholar 

  24. Kwapien K, Sierka M, Döbler J, Sauer J, Haertelt M, Fielicke A, Meijer G (2011) Structural diversity and flexibility of MgO gas-phase clusters. Angew Chemie Int Ed 50(7):1716–1719. https://doi.org/10.1002/anie.201004617

    Article  CAS  Google Scholar 

  25. Jain A, Kumar V, Sluiter M, Kawazoe Y (2006) First principles studies of magnesium oxide clusters by parallelized Tohoku University Mixed-Basis Program TOMBO. Comput Mater Sci 36(1–2):171–175. https://doi.org/10.1016/j.commatsci.2005.06.007

    Article  CAS  Google Scholar 

  26. de la Puente E, Aguado A, Ayuela A, López JM (1997) Structural and electronic properties of small neutral (MgO)n clusters. Phys Rev B 56(12):7607–7614. https://doi.org/10.1103/PhysRevB.56.7607

    Article  Google Scholar 

  27. Recio JM, Pandey R, Ayuela A, Kunz AB (1993) Molecular orbital calculations on (MgO)n and (MgO)n+ clusters (n=1–13). J Chem Phys 98(6):4783–4792. https://doi.org/10.1063/1.464982

    Article  CAS  Google Scholar 

  28. Moukouri S, Noguera C (1992) Theoretical study of small MgO clusters. Zeitschrift für Phys D Atoms Mol Clust 24(1):71–79. https://doi.org/10.1007/BF01436606

    Article  CAS  Google Scholar 

  29. Recio JM, Pandey R (1993) Ab initio study of neutral and ionized microclusters of MgO. Phys Rev A 47(3):2075–2082. https://doi.org/10.1103/PhysRevA.47.2075

    Article  CAS  PubMed  Google Scholar 

  30. Wang G, Xiao Y, Song Y, Zhou H, Tian Q, Li F (2017) A Density functional study on the aggregation of alumina clusters. Res Chem Intermed 43(3):1447–1463. https://doi.org/10.1007/s11164-016-2708-3

    Article  CAS  Google Scholar 

  31. Rahane AB, Deshpande MD, Kumar V (2011) Structural and electronic properties of (Al2O3)n clusters with n = 1–10 from first principles calculations. J Phys Chem C 115(37):18111–18121. https://doi.org/10.1021/jp2050614

    Article  CAS  Google Scholar 

  32. Patzer ABC, Chang C, Sedlmayr E, Sülzle D (2005) A density functional study of small AlxOy (x, y=1-4) clusters and their thermodynamic properties. Eur Phys J D 32(3):329–337. https://doi.org/10.1140/epjd/e2005-00026-8

    Article  CAS  Google Scholar 

  33. Fernández E, Balbás L, Borstel G, Soler J (2003) First principles calculation of the geometric and electronic structure of (Al2O3)n(Ox) clusters with N<15 and X=0, 1, 2. Thin Solid Films 428(1–2):206–210. https://doi.org/10.1016/S0040-6090(02)01264-6

    Article  CAS  Google Scholar 

  34. Sun J, Lu WC, Zhang W, Zhao LZ, Li ZS, Sun CC (2008) Theoretical study on (Al2O3)n (n = 1–10 and 30) fullerenes and H2 adsorption properties. Inorg Chem 47(7):2274–2279. https://doi.org/10.1021/ic7011364

    Article  CAS  PubMed  Google Scholar 

  35. Woodley SM (2011) Atomistic and electronic structure of (X2O3)n nanoclusters; n =1–5, X=B, Al, Ga, In and Tl. Proc R Soc A Math Phys Eng Sci 467(2131):2020–2042. https://doi.org/10.1098/rspa.2011.0009

    Article  CAS  Google Scholar 

  36. Chu TS, Zhang RQ, Cheung HF (2001) Geometric and electronic structures of silicon oxide clusters. J Phys Chem B 105(9):1705–1709. https://doi.org/10.1021/jp002046k

    Article  CAS  Google Scholar 

  37. Lu WC, Wang CZ, Nguyen V, Schmidt MW, Gordon MS, Ho KM (2003) Structures and fragmentations of small silicon oxide clusters by ab initio calculations. J Phys Chem A 107(36):6936–6943. https://doi.org/10.1021/jp027860h

    Article  CAS  Google Scholar 

  38. Harkless JAW, Stillinger DK, Stillinger FH (1996) Structures and energies of SiO2 clusters. J Phys Chem 100(4):1098–1103. https://doi.org/10.1021/jp950807r

    Article  CAS  Google Scholar 

  39. Nayak SK, Rao BK, Khanna SN, Jena P (1998) Atomic and electronic structure of neutral and charged SinOm clusters. J Chem Phys 109(4):1245–1250. https://doi.org/10.1063/1.476675

    Article  CAS  Google Scholar 

  40. Zhang RQ, Chu TS, Cheung HF, Wang N, Lee ST (2001) High reactivity of silicon suboxide clusters. Phys Rev B 64(11):113304. https://doi.org/10.1103/PhysRevB.64.113304

    Article  CAS  Google Scholar 

  41. Zhang RQ, Fan WJ (2006) Structures and properties of silicon oxide clusters by theoretical investigations. J Clust Sci 17(4):541–563. https://doi.org/10.1007/s10876-006-0087-4

    Article  CAS  Google Scholar 

  42. Zhang Zhang RQ (2006) Structural model of silica nanowire assembled from a highly stable (SiO2)8 unit. J Phys Chem B 110(3):1338–1343. https://doi.org/10.1021/jp052643c

    Article  CAS  PubMed  Google Scholar 

  43. Bandyopadhyay I, Aikens CM (2011) Structure and stability of (TiO2)n, (SiO2)n, and mixed TimSin − mO2n [n = 2–5, m = 1 to (n − 1)] clusters. J Phys Chem A 115(5):868–879. https://doi.org/10.1021/jp109412u

    Article  CAS  PubMed  Google Scholar 

  44. Jeong KS, Chang C, Sedlmayr E, Sülzle D (2000) Electronic structure investigation of neutral titanium oxide molecules TixOy. J Phys B At Mol Opt Phys 33(17):3417–3430. https://doi.org/10.1088/0953-4075/33/17/319

    Article  CAS  Google Scholar 

  45. Qu Z, Kroes G-J (2006) Theoretical study of the electronic structure and stability of titanium dioxide clusters (TiO2)n with n = 1–9. J Phys Chem B 110(18):8998–9007. https://doi.org/10.1021/jp056607p

    Article  CAS  PubMed  Google Scholar 

  46. Albaret T, Finocchi F, Noguera C (1999) First principles simulations of titanium oxide clusters and surfaces. Faraday Discuss 114:285–304. https://doi.org/10.1039/a903066b

    Article  CAS  Google Scholar 

  47. Albaret T, Finocchi F, Noguera C (2000) Density functional study of stoichiometric and O-rich titanium oxygen clusters. J Chem Phys 113(6):2238–2249. https://doi.org/10.1063/1.482038

    Article  CAS  Google Scholar 

  48. Hagfeldt A, Bergstroem R, Siegbahn HOG, Lunell S (1993) Structure and stability of small titanium/oxygen clusters studied by ab initio quantum chemical calculations. J Phys Chem 97(49):12725–12730. https://doi.org/10.1021/j100151a016

    Article  CAS  Google Scholar 

  49. Mitin AV (2011) Accurate theoretical IR and Raman spectrum of Al2O2 and Al2O3 molecules. Struct Chem 22(2):411–418. https://doi.org/10.1007/s11224-011-9736-9

    Article  CAS  Google Scholar 

  50. Desai SR, Wu H, Rohlfing CM, Wang L-S (1997) A study of the structure and bonding of small aluminum oxide clusters by photoelectron spectroscopy: AlxOy (X=1–2, Y=1–5). J Chem Phys 106(4):1309–1317. https://doi.org/10.1063/1.474085

    Article  CAS  Google Scholar 

  51. Wang L-S, Wu H, Desai SR, Fan J, Colson SD (1996) A photoelectron spectroscopic study of small silicon oxide clusters: SiO2, Si2O3, and Si2O4. J Phys Chem 100(21):8697–8700. https://doi.org/10.1021/jp9602538

    Article  CAS  Google Scholar 

  52. Wang L-S, Desai SR, Wu H, Nichloas JB (1997) Small silicon oxide clusters: chains and rings. Zeitschrift für Phys D Atoms Mol Clust 40(1–4):36–39. https://doi.org/10.1007/s004600050152

    Article  CAS  Google Scholar 

  53. Ziemann PJ, Castleman AW (1991) Mass-spectrometric study of the formation, evaporation, and structural properties of doubly charged MgO clusters. Phys Rev B 44(12):6488–6499. https://doi.org/10.1103/PhysRevB.44.6488

    Article  CAS  Google Scholar 

  54. Ziemann PJ, Castleman AW (1991) Stabilities and structures of gas phase MgO clusters. J Chem Phys 94(1):718–728. https://doi.org/10.1063/1.460340

    Article  CAS  Google Scholar 

  55. Saunders WA (1988) Structural dissimilarities between small II-VI compound clusters: MgO and CaO. Phys Rev B 37(11):6583–6586. https://doi.org/10.1103/PhysRevB.37.6583

    Article  CAS  Google Scholar 

  56. Yu W, Freas RB (1990) Formation and fragmentation of gas-phase titanium/oxygen cluster positive ions. J Am Chem Soc 112(20):7126–7133. https://doi.org/10.1021/ja00176a007

    Article  CAS  Google Scholar 

  57. Fernandes GFS, Machado FBC, Ferrão LFA (2018) A quantitative tool to establish magic number clusters, ε3, applied in small silicon clusters, Si2-11. J Mol Model 24(8):203. https://doi.org/10.1007/s00894-018-3748-y

    Article  CAS  PubMed  Google Scholar 

  58. Fernandes GFS, Machado FBC, Ferrão LFA (2020) Identification of magic numbers in homonuclear clusters: the ε3 stability ranking function. J Phys Chem A 124(2):454–463. https://doi.org/10.1021/acs.jpca.9b11264

    Article  CAS  PubMed  Google Scholar 

  59. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103(5):1793–1874. https://doi.org/10.1021/cr990029p

    Article  CAS  PubMed  Google Scholar 

  60. Gázquez JL, Cedillo A, Vela A (2007) Electrodonating and electroaccepting powers. J Phys Chem A 111(10):1966–1970. https://doi.org/10.1021/jp065459f

    Article  CAS  PubMed  Google Scholar 

  61. Chattaraj PK, Chakraborty A, Giri S (2009) Net electrophilicity. J Phys Chem A 113(37):10068–10074. https://doi.org/10.1021/jp904674x

    Article  CAS  PubMed  Google Scholar 

  62. Chakraborty A, Das R, Giri S, Chattaraj PK (2011) Net reactivity index (ΔωR±). J Phys Org Chem 24(9):854–864. https://doi.org/10.1002/poc.1855

    Article  CAS  Google Scholar 

  63. Bawa F, Panas I (2001) Limiting properties of (MgO)n and (CaO)n clusters. Phys Chem Chem Phys 3(15):3042–3047. https://doi.org/10.1039/b103738m

    Article  CAS  Google Scholar 

  64. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120(1–3):215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  65. Weigend F (2006) Accurate coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys 8(9):1057. https://doi.org/10.1039/b515623h

    Article  CAS  PubMed  Google Scholar 

  66. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297. https://doi.org/10.1039/b508541a

    Article  CAS  PubMed  Google Scholar 

  67. Finley J, Malmqvist P-Å, Roos BO, Serrano-Andrés L (1998) The Multi-State CASPT2 Method. Chem Phys Lett 288(2–4):299–306. https://doi.org/10.1016/S0009-2614(98)00252-8

    Article  CAS  Google Scholar 

  68. Celani P, Werner H-J (2000) Multireference perturbation theory for large restricted and selected active space reference wave functions. J Chem Phys 112(13):5546–5557. https://doi.org/10.1063/1.481132

    Article  CAS  Google Scholar 

  69. Shiozaki T, Győrffy W, Celani P, Werner H-J (2011) Communication: extended multi-state complete active space second-order perturbation theory: energy and nuclear gradients. J Chem Phys 135(8):081106-1-08110–4. https://doi.org/10.1063/1.3633329

    Article  CAS  Google Scholar 

  70. Shiozaki T, Werner H-J (2010) Communication: second-order multireference perturbation theory with explicit correlation: CASPT2-F12. J Chem Phys 133(14):141103-1–141103-141104. https://doi.org/10.1063/1.3489000

    Article  CAS  Google Scholar 

  71. Andersson K, Malmqvist PA, Roos BO, Sadlej AJ, Wolinski K (1990) Second-order perturbation theory with a CASSCF reference function. J Phys Chem 94(14):5483–5488. https://doi.org/10.1021/j100377a012

    Article  CAS  Google Scholar 

  72. Roos BO, Linse P, Siegbahn PEM, Blomberg MRa (1982) A simple method for the evaluation of the second-order-perturbation energy from external double-excitations with a CASSCF reference wavefunction. Chem Phys 66(1–2):197–207. https://doi.org/10.1016/0301-0104(82)88019-1

    Article  CAS  Google Scholar 

  73. Werner H, Knowles PJ (1985) A second order multiconfiguration SCF procedure with optimum convergence. J Chem Phys 82(11):5053–5063. https://doi.org/10.1063/1.448627

    Article  CAS  Google Scholar 

  74. Szalay PG, Bartlett RJ (1993) Multi-reference averaged quadratic coupled-cluster method: a size-extensive modification of multi-reference CI. Chem Phys Lett 214(5):481–488. https://doi.org/10.1016/0009-2614(93)85670-J

    Article  CAS  Google Scholar 

  75. Szalay PG, Bartlett RJ (1995) Approximately extensive modifications of the multireference configuration interaction method: a theoretical and practical analysis. J Chem Phys 103(9):3600–3612. https://doi.org/10.1063/1.470243

    Article  CAS  Google Scholar 

  76. Roos BO, Andersson K (1995) Multiconfigurational perturbation theory with level shift — the Cr2 potential revisited. Chem Phys Lett 245(2):215–223. https://doi.org/10.1016/0009-2614(95)01010-7

    Article  CAS  Google Scholar 

  77. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V; Cioslowski, J.; Fox, D. J. Gaussian 09 Revision D.01.

  78. Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M.; others. MOLPRO, Version 2015.1, a package of ab initio programs. Cardiff, UK 2015.

  79. Tang W, Sanville E, Henkelman G (2009) A grid-based bader analysis algorithm without lattice bias. J Phys Condens Matter 21(8):084204-1–084204-084207. https://doi.org/10.1088/0953-8984/21/8/084204

    Article  CAS  Google Scholar 

  80. Allouche A (2012) Software news and updates Gabedit — a graphical user interface for computational chemistry softwares. J Comput Chem 32:174–182. https://doi.org/10.1002/jcc

    Article  Google Scholar 

  81. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for bader decomposition of charge density. Comput Mater Sci 36(3):354–360. https://doi.org/10.1016/j.commatsci.2005.04.010

    Article  Google Scholar 

  82. Yu M, Trinkle DR (2011) Accurate and efficient algorithm for bader charge integration. J Chem Phys 134(6):064111. https://doi.org/10.1063/1.3553716

    Article  CAS  PubMed  Google Scholar 

  83. Salem JK, El-Nahhal IM, Hammad TM, Kuhn S, Sharekh SA, El-Askalani M, Hempelmann R (2015) Optical and fluorescence properties of MgO nanoparticles in micellar solution of hydroxyethyl laurdimonium chloride. Chem Phys Lett 636:26–30. https://doi.org/10.1016/j.cplett.2015.07.014

    Article  CAS  Google Scholar 

  84. Pellegrino F, Pellutiè L, Sordello F, Minero C, Ortel E, Hodoroaba V-D, Maurino V (2017) Influence of agglomeration and aggregation on the photocatalytic activity of TiO2 nanoparticles. Appl Catal B Environ 216:80–87. https://doi.org/10.1016/j.apcatb.2017.05.046

    Article  CAS  Google Scholar 

  85. Ngangbam C, Mondal A, Choudhuri B (2015) Efficient photon management with Ag nanoparticles coated TiO2 nanowire clusters for photodetector application. Electron Mater Lett 11(5):758–763. https://doi.org/10.1007/s13391-015-4207-x

    Article  CAS  Google Scholar 

  86. Bharthasaradhi R, Nehru LC (2016) Structural and phase transition of α- Al2O3 powders obtained by co-precipitation method. Phase Transitions 89(1):77–83. https://doi.org/10.1080/01411594.2015.1072628

  87. Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions. Tetrahedron 58(22):4417–4423

    Article  CAS  Google Scholar 

Download references

Funding

This work has been supported by Brazilian agencies Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) under grants 2019/25105–6, 2018/22669–3, and 2019/03729–8 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under grants 307136/2019–1, 313624/2019–4, and 406107/2016–5.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization, data curation, and validation were performed by Giovana V. Fonseca. Formal analysis, investigation, and methodology were carried out by Giovana V. Fonseca, Gabriel Freire Sanzovo Fernandes, and Luiz Fernando de Araujo Ferrão. Funding acquisition and resources were performed by Francisco Bolivar Correto Machado and Luiz Fernando de Araujo Ferrão. The first draft of the manuscript was written by Giovana V. Fonseca and Gabriel Freire Sanzovo Fernandes, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Luiz F. A. Ferrão.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection XXI - Brazilian Symposium of Theoretical Chemistry (SBQT2021)

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, G.V., Fernandes, G.F.S., Machado, F.B.C. et al. Electronic structure and physicochemical properties of the metal and semimetal oxide nanoclusters. J Mol Model 28, 307 (2022). https://doi.org/10.1007/s00894-022-05308-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05308-3

Keywords

Navigation