Skip to main content
Log in

Accurate theoretical IR and Raman spectrum of Al2O2 and Al2O3 molecules

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The accurate harmonic vibration frequencies together with the infrared (IR) and Raman intensities of the most stable conformers of Al2O2 and Al2O3 molecules have been calculated by the density functional theory (DFT) method with B3LYP exchange–correlation potential and using a set of the augmented correlated consistent basis sets up to quintuple order. The anharmonic vibration frequencies of the non-linear Al2O2 molecule have also been calculated. The obtained equilibrium geometrical parameters, harmonic and anharmonic vibration frequencies along with the IR and Raman intensities good converge to their limits with increasing the size of the used basis set. A comparison of the calculated harmonic and anharmonic vibrational frequencies with the available experimental ones points out that the small differences between the calculated harmonic and experimental frequencies can be further substantially reduced when calculations of the anharmonic vibrational frequencies will be available for all types of molecular geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Serebrennikov LV, Osin SB, Maltsev AA (1982) Infrared spectra of the products of reaction of aluminium, gallium, indium, and thalium with oxygen in an argon matrix. Estimation of the fundamentals, v3, in cyclic superoxides of group III metals. J Mol Struct 81:25–33

    Article  CAS  Google Scholar 

  2. Sonchik SM, Andrews L, Carlson KD (1983) Matrix reactions of molecular oxygen and ozone with aluminum atoms. J Phys Chem 87:2004–2011

    Article  CAS  Google Scholar 

  3. Barnes SJ, Haak M, Nibler JW (1985) Spectroscopic studies of AlO in argon matrices. J Chem Phys 82:670–675

    Article  Google Scholar 

  4. Dyke JM, Feher M, Hastings MP, Morris A, Paul AJ (1986) High temperature photoelectron spectroscopy: Al2O and Al. Mol Phys 58:161–171

    Article  CAS  Google Scholar 

  5. Rozhanskii IL, Chertikhin GV, Serebrennikov LV, Shevel’kov VF (1988) Mechanism of the Al + O2 reaction in low-temperature matrices. Russ J Phys Chem 62:2351–2358

    CAS  Google Scholar 

  6. Rozhanskii IL, Serebrennikov LV, Shevel’kov VF (1988) Laser-induced fluorescence-spectrum of the linear AlO2 molecules as isolated in the argon and nitrogen matrices. Moscow Univ Chem Bull 43:26

    Google Scholar 

  7. Rozhanskii IL, Serebrennikov LV, Shevel’kov VF (1990) Raman-scatering spectra of products of Al + O2 reaction in inert matrices. Possible structure of Al2O3 molecule. Russ J Phys Chem 64:521–524

    CAS  Google Scholar 

  8. Chertikhin GV, Serebrennikov LV, Shevel’kov VF (1991) IR and Raman spectra of the Al2O2 isomers in argon matrices. Russ J Phys Chem 65:1078

    CAS  Google Scholar 

  9. Cai M, Carter CC, Miller TA, Bondybey VE (1991) Fluorescence excitation and resolved emission spectra of supersonically cooled Al2O. J Chem Phys 95:73–79

    Article  CAS  Google Scholar 

  10. Andrews L, Burkholder TR, Yustein JT (1992) Reactions of pulsed laser evaporated aluminum atoms with oxygen. Infrared spectra of the reaction products in solid argon. J Phys Chem 96:10182–10189

    Article  CAS  Google Scholar 

  11. Desai SR, Wu H, Rohlfing CM, Wang L-S (1997) A study of the structure and bonding of small aluminum oxide clusters by photoelectron spectroscopy: AlxO y (x = 1–2, y = 1–5). J Chem Phys 106:1309–1317

    Article  CAS  Google Scholar 

  12. Rubio J, Ricart JM, Illas F (1988) Doublet Instability and the molecular structure of AlO2. J Comput Chem 9:836–843

    Article  CAS  Google Scholar 

  13. Masip J, Clotet A, Ricart JM, Illas F, Rubio J (1988) Molecular structure and vibrational frequencies of AlxOy, (x = 1, 2; y ≤ 3) derived from ab initio calculations. Chem Phys Lett 144:373–377

    Article  CAS  Google Scholar 

  14. Boldyrev AI, Schleyer PvR (1991) Ab initio prediction of the structures and stabilities of the hyperaluminum molecules: A13O and square-planar A14O. J Am Chem Soc 113:9045–9054

    Article  CAS  Google Scholar 

  15. Nemukhin AV, Weinhold F (1992) Structures of the aluminum oxides studied by ab initio methods with natural bond orbital analysis. J Chem Phys 97:3420–3430

    Article  CAS  Google Scholar 

  16. Bencivenni L, Pelino M, Ramondo F (1992) Ab initio study on the Al2O, Al2O2, Si2O2, and AlSiO2 oxides and on the LiAlO2 and NaAlO2 molecules. J Mol Struct Theochem 253:109–120

    Article  Google Scholar 

  17. Nemukhin AV, Almlöf J (1992) Theoretical investigations of AlO2. J Mol Struct Theochem 253:101–107

    Article  Google Scholar 

  18. Zaitsevskii AV, Chertikhin GV, Serebrennikov LV, Stepanov NF (1993) Theoretical investigations of the isomerization of Al2O2. J Mol Struct Theochem 280:291–293

    Article  Google Scholar 

  19. Nemukhin AV (1994) On the structure of the AlO2 dimer, A12O4. J Mol Struct Theochem 315:225–227

    Article  Google Scholar 

  20. Archibong EF, Sullivan R (1995) An ab initio study of the structures and harmonic vibrational frequencies of M2O2 (M = Al, Ga, In, T1). J Phys Chem 99:15830–15836

    Article  CAS  Google Scholar 

  21. Archibong EF, St-Amant A (1998) The cyclic MO2 (M = Al, Ga) systems: CCSD(T) and DFT studies of their structures, harmonic vibrational frequencies, and dissociation energies. Chem Phys Lett 284:331–338

    Article  CAS  Google Scholar 

  22. Chang Ch, Patzer ABC, Sedlmayr E, Sülzle D (1998) Ab initio studies of stationary points of the Al2O3 molecule. Eur Phys J D 2:57–62

    Article  CAS  Google Scholar 

  23. Archibong EF, St-Amant A (1998) Molecular structure of the AlO2 dimer, Al2O4. J Phys Chem 102:6877–6882

    Article  CAS  Google Scholar 

  24. Archibong EF, St-Amant A (1999) On the structure of Al2O3 and photoelectron spectra of Al2O2 and Al2O3 . J Phys Chem A 103:1109–1114

    Article  CAS  Google Scholar 

  25. Ghanty TK, Davidson ER (1999) Electronic structure and low-lying electronic states of Al3O and Al3O: photoelectron spectrum of Al3O. J Phys Chem A 103:2867–2872

    Article  CAS  Google Scholar 

  26. Ghanty TK, Davidson ER (1999) Theoretical interpretation of the photoelectron spectra of Al3O2 and Al3O3 . J Phys Chem A 103:8985–8993

    Article  CAS  Google Scholar 

  27. Patzer ABC, Chang Ch, Sedlmayr E, Sülzle D (1999) Ab initio thermodynamic properties for different isomers of the Al2O3 molecule. Eur Phys J D 6:57–62

    Article  CAS  Google Scholar 

  28. Chang Ch, Patzer ABC, Sedlmayr E, Steinke T, Sülzle D (2000) Electronic structure investigation of the Al4O4 molecule. Chem Phys Lett 324:108–114

    Article  CAS  Google Scholar 

  29. Bu Y, Song X (2000) Structural analysis of the cyclic AlO2 and AlS2 systems in doublet and quartet states at density functional theory and the electron correlation levels. J Chem Phys 113:4216–4229

    Article  CAS  Google Scholar 

  30. Politzer P, Lane P, Grice ME (2001) Energetics of aluminum combustion. J Phys Chem A 105:7473–7480

    Article  CAS  Google Scholar 

  31. Sarker MBM, Kim C-S, Choi CH (2005) Ground and excited states of Al2O2 and its anion. Chem Phys Lett 411:297–301

    Article  CAS  Google Scholar 

  32. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  33. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  34. Becke AD (1997) Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J Chem Phys 107:8554–8560

    Article  CAS  Google Scholar 

  35. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb M A, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian H P, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian, Inc., Wallingford

  37. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  38. Woon DE, Dunning TH Jr (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Mitin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitin, A.V. Accurate theoretical IR and Raman spectrum of Al2O2 and Al2O3 molecules. Struct Chem 22, 411–418 (2011). https://doi.org/10.1007/s11224-011-9736-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9736-9

Keywords

Navigation