Skip to main content
Log in

Diversity and enzymatic, biosurfactant and phytotoxic activities of culturable Ascomycota fungi present in marine sediments obtained near the South Shetland Islands, maritime Antarctica

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

We studied the culturable fungal community recovered from deep marine sediments in the maritime Antarctic, and assessed their capabilities to produce exoenzymes, emulsifiers and metabolites with phytotoxic activity. Sixty-eight Ascomycota fungal isolates were recovered and identified. The most abundant taxon recovered was the yeast Meyerozyma guilliermondii, followed by the filamentous fungi Penicillium chrysogenum, P. cf. palitans, Pseudeurotium cf. bakeri, Thelebolus balaustiformis, Antarctomyces psychrotrophicus and Cladosporium sp. Diversity indices displayed low values overall, with the highest values obtained at shallow depth, decreasing to the deepest location sampled. Only M. guilliermondii and P. cf. palitans were detected in the sediments at all depths sampled, and were the most abundant taxa at all sample sites. The most abundant enzymes detected were proteases, followed by invertases, cellulases, lipases, carrageenases, agarases, pectinases and esterases. Four isolates showed good biosurfactant activity, particularly the endemic species A. psychrotrophicus. Twenty-four isolates of P. cf. palitans displayed strong phytotoxic activities against the models Lactuca sativa and Allium schoenoprasum. The cultivable fungi recovered demonstrated good biosynthetic activity in the production of hydrolytic exoenzymes, biosurfactant molecules and metabolites with phytotoxic activity, reinforcing the importance of documenting the taxonomic, ecological and biotechnological properties of fungi present in deep oceanic sediments of the Southern Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All sequences reported are available by their GenBank accession numbers reported in the Suppl. Table 1.

References

  • Adhikari M, Kim S, Yadav DR, Um YH, Kim HS, Lee HB, Lee YS (2016) A new record of Pseudeurotium bakeri from crop field soil in Korea. Kor J Mycol 44:145–149

    Google Scholar 

  • Amaral PFF, Coelho MAZ, Marrucho IM, Coutinho JA (2010) Biosurfactants from yeasts: characteristics, production and application. In: Sen R (ed) Biosurfactants: advances in experimental medicine and biology. Springer, New York, pp 236–249

    Chapter  Google Scholar 

  • Amend A, Burgaud G, Cunliffe M, Edgcomb VP, Ettinger CL et al (2019) Fungi in the marine environment: open questions and unsolved problems. mBio 10:e01189-18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arenz BE, Blanchette RA (2009) Investigations of fungal diversity in wooden structures and soils at historic sites on the Antarctic Peninsula. Can J Microbiol 55:46–56

    Article  PubMed  CAS  Google Scholar 

  • Arenz BE, Blanchette RA (2011) Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys. Soil Biol Biochem 43:308–315

    Article  CAS  Google Scholar 

  • Azmi OR, Seppelt RD (1998) The broad-scale distribution of microfungi in the Windmill Islands region, continental Antarctica. Polar Biol 19:92–100

    Article  Google Scholar 

  • Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C (2014) jvenn: an interactive Venn diagram viewer. BMC Bioinformatics 15:293

    Article  PubMed  PubMed Central  Google Scholar 

  • Barone G, Corinaldesi C, Rastelli E, Tangherlini M, Varrella S, Danovaro R, Dell’Anno A (2022) Local environmental conditions promote high turnover diversity of benthic deep-sea fungi in the Ross Sea (Antarctica). J Fungi 8:65

    Article  CAS  Google Scholar 

  • Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H et al (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc R S B Biol Sci 274:3069–3077

    Article  CAS  Google Scholar 

  • Bovio E, Garzoli L, Poli A, Prigione V, Firsova D, McCormack GP, Varese GC (2018) The culturable mycobiota associated with three Atlantic sponges, including two new species: Thelebolus balaustiformis and T. spongiae. Fung Syst Evol 1:141–167

    Article  CAS  Google Scholar 

  • Brunati M, Rojas JL, Sponga F, Ciciliato I, Losi D, Göttlich E, de Hoog S, Genilloud O, Marinelli F (2009) Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar Genomics 2:43–50

    Article  PubMed  Google Scholar 

  • Bruno S, Coppola D, di Prisco G, Giordano D, Verde C (2019) Enzymes from marine polar regions and their biotechnological applications. Mar Drugs 17:544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bueno JL, Santos PAD, da Silva RR, Moguel IS, Pessoa JA, Vianna MV, Gurpilhares DDB (2019) Biosurfactant production by yeasts from different types of soil of the South Shetland Islands (Maritime Antarctica). J Appl Microbiol 126:1402–1413

    Article  PubMed  CAS  Google Scholar 

  • Castellani A (1939) Viability of some pathogenic fungi in distilled water. J Trop Med Hyg 42:225–226

    Google Scholar 

  • Coelho LC, de Carvalho CR, Rosa CA, Rosa LH (2021) Diversity, distribution, and xerophilic tolerance of cultivable fungi associated with the Antarctic angiosperms. Polar Biol 44:379–388

    Article  Google Scholar 

  • Coleine C, Stajich JE, Selbmann L (2022) Fungi are key players in extreme ecosystems. Trends Ecol Evol 37:517–528

    Article  PubMed  CAS  Google Scholar 

  • Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Cooper C, Walker AK (2022) Endophytic Fungi from Marine Macroalgae in Nova Scotia. Northeast Nat 29:295–310

    Article  Google Scholar 

  • Correa HT, Vieira WF, Pinheiro TMA, Cardoso VL, Silveira E, Sette LD, Pessoa A, Filho UC (2020) L-asparaginase and biosurfactants produced by extremophile yeasts from Antarctic environments. Ind Biotechnol 16:107–116

    Article  CAS  Google Scholar 

  • da Silva TH, Silva DAS, de Oliveira FS, Schaefer CEGR, Rosa CA, Rosa LH (2020) Diversity, distribution, and ecology of viable fungi in permafrost and active layer of Maritime Antarctica. Extremophiles 24:565–576

    Article  PubMed  Google Scholar 

  • da Silva MK, da Silva AV, Fernandez PM, Montone RC, Alves RP, de Queiroz AC et al (2022a) Extracellular hydrolytic enzymes produced by yeasts from Antarctic lichens. An Acad Bras Ciênc 94:e20210540

    Article  PubMed  Google Scholar 

  • da Silva MK, de Souza LMD, Vieira R, Neto AA, Lopes FA, de Oliveira FS et al (2022b) Fungal and fungal-like diversity in marine sediments from the maritime Antarctic assessed using DNA metabarcoding. Sci Rep 12:21044

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • de Carvalho CR, Santiago IF, da Costa CL, Câmara PEAS, Silva MC, Stech M, Rosa CA, Rosa LH (2019) Fungi associated with plants and lichens of Antarctica. In: Rosa LH (ed) Fungi of Antarctica: diversity, ecology and biotechnological applications. Springer, Cham, pp 165–199

    Chapter  Google Scholar 

  • de Hoog GS, Gottlich E, Platas G, Genilloud O, Leotta G, Van Brummelen J (2005) Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica. Stud Mycol 51:33–76

    Google Scholar 

  • de Menezes GCA, Godinho VM, Porto BA, Gonçalves VN, Rosa LH (2017) Antarctomyces pellizariae sp. nov., a new, endemic, blue, snow resident psychrophilic ascomycete fungus from Antarctica. Extremophiles 21:259–269

    Article  PubMed  Google Scholar 

  • de Menezes GCA, Amorim SS, Gonçalves VN, Godinho VM, Simões JC, Rosa CA, Rosa LH (2019) Diversity, distribution, and ecology of fungi in the seasonal snow of Antarctica. Microorganisms 7:445

    Article  PubMed  PubMed Central  Google Scholar 

  • de Menezes GCA, Porto BA, Amorim SS, Zani CL, de Almeida Alves TM, Junior PAS et al (2020) Fungi in glacial ice of Antarctica: diversity, distribution and bioprospecting of bioactive compounds. Extremophiles 24:367–376

    Article  PubMed  Google Scholar 

  • de Souza LMD, Ogaki MB, Teixeira EAA, de Menezes GCA, Convey P, Rosa CA, Rosa LH (2022) Communities of culturable freshwater fungi present in Antarctic lakes and detection of their low-temperature-active enzymes. Brazil J Microbiol 1:1–11

    Google Scholar 

  • de Souza Barros VM, Pedrosa JLF, Gonçalves DR, Medeiros FCLD, Carvalho GR, Gonçalves AH, Teixeira PVVQ (2021) Herbicides of biological origin: a review. J Hortic Sci Biotechnol 96:288–296

    Article  Google Scholar 

  • Ding Z, Li L, Che Q, Li D, Gu Q, Zhu T (2016) Richness and bioactivity of culturable soil fungi from the Fildes Peninsula, Antarctica. Extremophiles 20:425–435

    Article  PubMed  CAS  Google Scholar 

  • Duarte AWF, Dayo-Owoyemi I, Nobre FS, Pagnocca FC, Chaud LCS, Pessoa A, Felipe MGA, Sette LD (2013) Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 17:1023–1035

    Article  PubMed  CAS  Google Scholar 

  • Duarte AWF, dos Santos JA, Vianna MV, Vieira JMF, Mallagutti VH, Inforsato FJ et al (2018a) Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Cri Rev Biotechnol 38:600–619

    Article  CAS  Google Scholar 

  • Duarte AWF, Barato MB, Nobre FS, Polezel DA, de Oliveira TB, dos Santos JA, Rodrigues A, Sette LD (2018b) Production of cold-adapted enzymes by filamentous fungi from King George Island, Antarctica. Polar Biol 41:2511–2521

    Article  Google Scholar 

  • Ferrari BC, Zhang C, Van Dorst J (2011) Recovering greater fungal diversity from pristine and diesel fuel contaminated sub-Antarctic soil through cultivation using both a high and a low nutrient media approach. Front Microbiol 2:217

    Article  PubMed  PubMed Central  Google Scholar 

  • Flewelling A, Johnson JA, Gray CA (2013) Isolation and bioassay screening of fungal endophytes from North Atlantic marine macroalgae. Bot Mar 56: 287–297

  • Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241

    Google Scholar 

  • Furbino LE, Godinho VM, Santiago IF, Pellizari FM, Alves TM, Zani CL et al (2014) Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Microb Ecol 67:775–787

    Article  ADS  PubMed  Google Scholar 

  • Furbino LE, Pellizzari FM, Neto PC, Rosa CA, Rosa LH (2018) Isolation of fungi associated with macroalgae from maritime Antarctica and their production of agarolytic and carrageenolytic activities. Polar Biol 41:527–535

    Article  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Godinho VM, Furbino LE, Santiago IF, Pellizzari FM, Yokoya NS, Pupo D et al (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:1434–1451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Godinho VM, Gonçalves VN, Santiago IF, Figueredo HM, Vitoreli GA, Schaefer CEGR et al (2015) Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles 19:585–596 Godinho VM, de Paula MTR, Silva DAS, Paresque K, Martins AP, Colepicolo P, Rosa CA, Rosa LH (2019) Diversity and distribution of hidden cultivable fungi associated with marine animals of Antarctica. Fungal Biol 123:507–516

    Article  Google Scholar 

  • Gomes ECQ, Godinho VM, Silva DA, de Paula MT, Vitoreli GA, Zani CL et al (2018) Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites. Extremophiles 22:381–393

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves VN, Vaz AB, Rosa CA, Rosa LH (2012) Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol Ecol 8:459–471

    Article  Google Scholar 

  • Gonçalves VN, Campos LS, Melo IS, Pellizari VH, Rosa CA, Rosa LH (2013) Penicillium solitum: a mesophilic psychrotolerant fungus present in marine sediments from Antarctica. Polar Biol 36:1823–1831

    Article  Google Scholar 

  • Gonçalves VN, Carvalho CR, Johann S, Mendes G, Alves TMA et al (2015) Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol 38:1143–1152

    Article  Google Scholar 

  • Gonçalves VN, Vitoreli GA, de Menezes GC, Mendes CR, Secchi ER, Rosa CA, Rosa LH (2017) Taxonomy, phylogeny and ecology of cultivable fungi present in seawater gradients across the Northern Antarctica Peninsula. Extremophiles 21:1005–1015

    Article  PubMed  Google Scholar 

  • Hagestad CO, Andersen JH, Altermark B, Hansen E, Rämä T (2019) Cultivable marine fungi from the Arctic Archipelago of Svalbard and their antibacterial activity. Mycology 11:230–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Palaeontological Statistic software for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hassan N, Rafiq M, Hayat M, Shah AA, Hasan F (2016) Psychrophilic and psychrotrophic fungi: a comprehensive review. Rev Environ Sci Biotechnol 15:147–172

    Article  Google Scholar 

  • Henríquez M, Vergara K, Norambuena J, Beiza A, Maza F, Ubilla P et al (2014) Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World J Microbiol Biotechnol 30:65–76

    Article  PubMed  Google Scholar 

  • Heo YM, Lee H, Kim K, Kwon SL, Park MY, Kang JE, Kim GH, Kim BS, Kim JJ (2019) Fungal diversity in intertidal mudflats and abandoned solar salterns as a source for biological resources. Mar Drugs 17:601

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrera LM, García-Laviña CX, Marizcurrena JJ, Volonterio O, de León RP, Castro-Sowinski S (2017) Hydrolytic enzyme-producing microbes in the Antarctic oligochaete Grania sp. (Annelida). Polar Biol 40:947–953

    Article  Google Scholar 

  • Jezierska S, Claus S, Van Bogaert I (2017) Yeast glycolipid biosurfactants. FEBS Lett 592:1312–1329

    Article  PubMed  Google Scholar 

  • Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang KL (2015) Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers 73:1–72

    Article  Google Scholar 

  • Kitamoto D, Yanagishita H, Shinbo T, Nakane T, Kamisawa C, Nakahara T (1993) Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J Biotechnol 29:91–96

    Article  CAS  Google Scholar 

  • Kochkina GA, Ozerskaya SM, Ivanushkina NE, Chigineva NI, Vasilenko OV, Spirina EV, Gilichinskii DA (2014) Fungal diversity in the Antarctic active layer. Microbiology 83:94–101

    Article  CAS  Google Scholar 

  • Konishi M, Morita T, Fukuoka T, Imura T, Kakugawa K, Kitamoto D (2007) Production of different types of mannosylerythritol lipids as biosurfactants by the newly isolated yeast strains belonging to the genus Pseudozyma. Appl Microbiol Biotechnol 75:521–531

    Article  PubMed  CAS  Google Scholar 

  • Kozlovsky AG, Kochkina GA, Zhelifonova VP, Antipova TV, Ivanushkina NE, Ozerskaya SM (2020) Secondary metabolites of the genus Penicillium from undisturbed and anthropogenically altered Antarctic habitats. Folia Microbiol 65:95–102

    Article  CAS  Google Scholar 

  • Krishnan A, Alias SA, Wong CMVL, Pang KL, Convey P (2011) Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biol 34:1535–1542

    Article  Google Scholar 

  • Lachance MA, Bowles JM, Starmer WT, Barker JSF (1999) Kodamaea kakaduensis and Candida tolerans two new ascomycetous yeasts species from Australian Hibiscus flowers. Can J Microbiol 45:172–177

    Article  PubMed  CAS  Google Scholar 

  • Laich F, Vaca I, Chavez R (2013) Rhodotorula portillonensis sp. nov., a basidiomycetous yeast isolated from Antarctic shallow-water marine sediment. Int J Syst Evol Microbiol 63:3884–3891

    Article  PubMed  CAS  Google Scholar 

  • Lario LD, Chaud L, das Graças Almeida M, Converti A, Sette LD, Pessoa A, (2015) Production, purification, and characterization of an extracellular acid protease from the marine Antarctic yeast Rhodotorula mucilaginosa L7. Fungal Biol 119:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Lieckfeldt E, Meyer W, Börner T (1993) Rapid identification and differentiation of yeasts by DNA and PCR fingerprinting. J Basic Microbiol 33:413–425

    Article  PubMed  CAS  Google Scholar 

  • Liepins J, Balina K, Soloha R, Berzina I, Lukasa LK, Dace E (2021) Glycolipid biosurfactant production from waste cooking oil by yeast: review of substrates, producers and products. Fermentation 7:136

    Article  CAS  Google Scholar 

  • Loperena L, Soria V, Varela H, Lupo S, Bergalli A, Guigou M et al (2012) Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World J Microbiol Biotechnol 28:2249–2256

    Article  PubMed  CAS  Google Scholar 

  • López-Garcia P, Rodriguez-Valera F, Pedrós-Alió C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    Article  ADS  PubMed  Google Scholar 

  • Loque CP, Medeiros AO, Pellizzari FM, Oliveira EC, Rosa CA, Rosa LH (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648

    Article  Google Scholar 

  • Luft L, Confortin TC, Todero I, Zabot GL, Mazutti MA (2020) An overview of fungal biopolymers: bioemulsifiers and biosurfactants compounds production. Cri Rev Biotechnol 40:1059–1080

    Article  CAS  Google Scholar 

  • Malkus A, Chang PFL, Zuzga SM, Chung KR, Shao J, Cunfer BM, Cunfer BM, Arseniuk E, Ueng PP (2006) RNA polymerase II gene (RPB2) encoding the second largest protein subunit in Phaeosphaeria nodorum and P. avenaria. Mycol Res 110:1152–1164

    Article  PubMed  CAS  Google Scholar 

  • Marchese P, Garzoli L, Young R, Allcock L, Barry F, Tuohy M, Murphy M (2021) Fungi populate deep-sea coral gardens as well as marine sediments in the Irish Atlantic Ocean. Environ Microbiol 23:4168–4184

    Article  PubMed  CAS  Google Scholar 

  • Martorell MM, Ruberto LAM, Fernández PM, Castellanos de Figueroa LI, Mac Cormack WP (2017) Bioprospection of cold-adapted yeasts with biotechnological potential from Antarctica. J Basic Microbiol 57:504–516

    Article  PubMed  CAS  Google Scholar 

  • Martorell MM, Ruberto LAM, Fernandez PM, De Figueroa LIC, Mac Cormack WP (2019) Biodiversity and enzymes bioprospection of Antarctic filamentous fungi. Antarct Sci 31:3–12

    Article  ADS  Google Scholar 

  • McRae CF, Hocking AD, Seppelt RD (1999) Penicillium species from terrestrial habitats in the Windmill Islands, East Antarctica, including a new species, Penicillium antarcticum. Polar Biol 21:97–111

    Article  Google Scholar 

  • Mohamed GA, Ibrahim SRM (2021) Untapped potential of marine-associated Cladosporium species: An overview on secondary metabolites, biotechnological relevance, and biological activities. Mar Drugs 19:645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagano Y, Nagahama T, Hatada Y, Nunoura T, Takami H, Miyazaki J, Takai K, Horikoshi K (2010) Fungal diversity in deep-sea sediments – the presence of novel fungal groups. Fungal Ecol 3:316–325

    Article  Google Scholar 

  • Nagano Y, Miura T, Nishi S, Lima AO, Nakayama C, Pellizari VH, Fujikura K (2017) Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau. Deep-Sea Res II: Top Stud Oceanogr 146:59–67

    ADS  Google Scholar 

  • Nicoletti R, Andolfi A (2018) The marine-derived filamentous fungi in biotechnology. In: Rampelotto P, Trincone A (eds) Grand challenges in biology and biotechnology. Springer, Cham, pp 157–189

    Chapter  Google Scholar 

  • Ogaki MB, Coelho LC, Vieira R, Neto AA, Zani CL, Alves TM et al (2020a) Cultivable fungi present in deep-sea sediments of Antarctica: taxonomy, diversity, and bioprospecting of bioactive compounds. Extremophiles 24:227–238

    Article  PubMed  CAS  Google Scholar 

  • Ogaki MB, Teixeira DR, Vieira R, Lírio JM, Felizardo JP, Abuchacra RC et al (2020b) Diversity and bioprospecting of cultivable fungal assemblages in sediments of lakes in the Antarctic Peninsula. Fungal Biol 124:601–611

    Article  PubMed  CAS  Google Scholar 

  • Ogaki MB, Vieira R, Muniz MC, Zani CL, Alves TM, Junior PA et al (2020c) Diversity, ecology, and bioprospecting of culturable fungi in lakes impacted by anthropogenic activities in Maritime Antarctica. Extremophiles 24:637–655

    Article  PubMed  CAS  Google Scholar 

  • Ogaki MB, Pinto OHB, Vieira R, Neto AA, Convey P, Carvalho-Silva M, Rosa CA, Câmara PEAS, Rosa LH (2021) Fungi present in Antarctic deep-sea sediments assessed using DNA metabarcoding. Microb Ecol 82:157–164

    Article  ADS  PubMed  CAS  Google Scholar 

  • Oses-Pedraza R, Torres-Díaz C, Lavín P, Retamales-Molina P, Atala C, Gallardo-Cerda J, Acuña-Rodríguez IS, Molina-Montenegro MA (2020) Root endophytic Penicillium promotes growth of Antarctic vascular plants by enhancing nitrogen mineralization. Extremophiles 24:721–732

    Article  PubMed  CAS  Google Scholar 

  • Peck LS, Convey P, Barnes DKA (2006) Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Biol Rev 81:75–109

    Article  PubMed  Google Scholar 

  • Perfumo A, Banat IM, Marchant R (2018) Going green and cold: biosurfactants from low-temperature environments to biotechnology applications. Trends Biotechnol 36:277–289

    Article  PubMed  CAS  Google Scholar 

  • Poveda G, Gil-Durán C, Vaca I, Levicán G, Chávez R (2018) Cold-active pectinolytic activity produced by filamentous fungi associated with Antarctic marine sponges. Biol Res 51:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Purić J, Vieira G, Cavalca LB, Sette LD, Ferreira H, Vieira MLC, Sass DC (2018) Activity of Antarctic fungi extracts against phytopathogenic bacteria. Lett Appl Microbiol 66:530–536

    Article  PubMed  Google Scholar 

  • Quijada L, Matočec N, Kušan I, Tanney JB, Johnston PR, Mešić A, Pfister DH (2022) Apothecial ancestry, evolution, and re-evolution in Thelebolales (Leotiomycetes, Fungi). Biology 11:583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rafiq M, Hassan N, Rehman M, Hasan F (2019) Adaptation mechanisms and applications of psychrophilic fungi. In: Tiquia-Arashiro SM, Grube M (eds) Fungi in extreme environments: ecological role and biotechnological significance. Springer, Cham, pp 157–174

    Chapter  Google Scholar 

  • Rafiq M, Hassan N, Hayat M, Ibrar M, Sajjad W, Haleem A, Maqsood-ur-Rehman M, Raza AM, Hasan F (2021) Geochemistry and insights into the distribution of biotechnological important fungi from the third pole of the world, Karakoram Mountains Range. Geomicrobiol J 38:395–403

    Article  CAS  Google Scholar 

  • Raghukumar S (2017) Extreme Marine Environments. In: Raghukumar S (ed) Fungi in Coastal and Oceanic Marine Ecosystems. Springer, Cham, pp 219–263

    Chapter  Google Scholar 

  • Rédou V, Navarri M, Meslet-Cladière L, Barbier G, Burgaud G (2015) Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol 81:3571–3583

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Rogers AD, Frinault BAV, Barnes DKA, Bindoff NL, Downie R et al (2020) Antarctic futures: an assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the Southern Ocean. Annu Rev Mar Sci 12:87–120

    Article  ADS  CAS  Google Scholar 

  • Rosa LH, Vaz ABM, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic Grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167

    Article  Google Scholar 

  • Rosa LH, Queiroz SC, Moraes RM, Wang X, Techen N, Pan Z, Wedge DE (2013) Coniochaeta ligniaria: antifungal activity of the cryptic endophytic fungus associated with autotrophic tissue cultures of the medicinal plant Smallanthus sonchifolius (Asteraceae). Symbiosis 60:133–142

    Article  Google Scholar 

  • Rosa LH, Zani CL, Cantrell CL, Duke SO, Dijck PV, Desideri A, Rosa CA (2019a) Fungi in Antarctica: diversity, ecology, effects of climate change, and bioprospection for bioactive compounds. In: Rosa LH (ed) Fungi of Antarctica. Springer, Cham, pp 1–17

    Chapter  Google Scholar 

  • Rosa LH, Pellizzari FM, Ogaki MB, de Paula MTR, Mansilla A et al (2019b) Sub-Antarctic and Antarctic marine ecosystems: an unexplored ecosystem of fungal diversity. In: Rosa LH (ed) Fungi of Antarctica. Springer, Cham, pp 221–242

    Chapter  Google Scholar 

  • Santiago IF, Alves TM, Rabello A, Sales Junior PA, Romanha AJ, Zani CL, Rosa CA, Rosa LH (2012) Leishmanicidal and antitumoral activities of endophytic fungi associated with the Antarctic angiosperms Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. Extremophiles 16:95–103

    Article  PubMed  Google Scholar 

  • Santiago IF, Soares MA, Rosa CA, Rosa LH (2015) Lichensphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica. Extremophiles 19:1087–1097

    Article  PubMed  Google Scholar 

  • Santos JA, Meyer E, Sette LD (2020) Fungal community in Antarctic soil along the retreating Collins Glacier (Fildes peninsula, King George Island). Microorganisms 8:1145

    Article  PubMed  PubMed Central  Google Scholar 

  • Sena HH, Sanches MA, Rocha DFS, Segundo Filho WOP, de Souza ÉS, de Souza JVB (2018) production of biosurfactants by soil fungi isolated from the Amazon Forest. Int J Microbiol 2018:1–8

    Article  Google Scholar 

  • Sonjak S, Frisvad JC, Gunde-Cimerman N (2006) Penicillium mycobiota in Arctic subglacial ice. Microb Ecol 52:207–216

    Article  ADS  PubMed  Google Scholar 

  • Stchigel AM, Josep CANO, Mac Cormack W, Guarro J (2001) Antarctomyces psychrotrophicus gen. et sp. nov., a new ascomycete from Antarctica. Mycol Res 105:377–382

    Article  CAS  Google Scholar 

  • Tang X, Yu L, Xu W, Zhang X, et al. (2020) Fungal diversity of deep-sea sediments in Mid-Oceanic Ridge area of the East Pacific and the South Indian Oceans. Bot Mar 63:183–196

  • Teixeira PC, Donagemma GK, Fontana A, Teixeira WG (2017) Manual de métodos de análise de solo. EMBRAPA - Brasília

  • Tian Y, Li YL, Zhao FC (2017) Secondary metabolites from polar organisms. Mar Drugs 15:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Torres-Garcia D, Gené J, García D (2022) New and interesting species of Penicillium (Eurotiomycetes, Aspergillaceae) in freshwater sediments from Spain. MycoKeys 86:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Triolet M, Guillemin JP, Andre O, Steinberg C (2020) Fungal-based bioherbicides for weed control: a myth or a reality? Weed Res 60:60–77

    Article  Google Scholar 

  • Tripathi L, Irorere VU, Marchant R, Banat IM (2018) Marine derived biosurfactants: a vast potential future resource. Biotechnol Lett 40:1441–1457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Troncoso E, Barahona S, Carrasco M, Villarreal P, Alcaíno J, Cifuentes V, Baeza M (2016) Identification and characterization of yeasts isolated from the South Shetland Islands and the Antarctic Peninsula. Polar Biol 40:649–658

    Article  Google Scholar 

  • Turkiewicz M, Pazgier M, Kalinowska H, Bielecki S (2003) A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles 7:435–442

    Article  PubMed  CAS  Google Scholar 

  • Turkiewicz M, Pazgier M, Donachie SP, Kalinowska H (2005) Invertase and α-glucosidase production by the endemic Antarctic marine yeast Leucosporidium antarcticum. Pol Polar Res 26:125–136

    Google Scholar 

  • Vaca I, Faúndez C, Maza F, Paillavil B, Hernández V, Acosta F, Levicán G, Martínez C, Chávez R (2013) Cultivable psychrotolerant yeasts associated with Antarctic marine sponges. World J Microbiol Biotechnol 29:183–189

    Article  PubMed  CAS  Google Scholar 

  • Varrella S, Barone G, Tangherlini M, Rastelli E, Dell’Anno A, Corinaldesi C (2021) Diversity, ecological role and biotechnological potential of Antarctic marine fungi. J Fungi (basel) 7:391

    Article  PubMed  CAS  Google Scholar 

  • Vaz ABM, Rosa LH, Vieira ML, Garcia VD, Brandão LR, Teixeira LC et al (2011) The diversity extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 42:937–947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wentzel LCP, Inforsato FJ, Montoya QV, Rossin BG, Nascimento NR, Rodrigues A, Sette LD (2018) Fungi from Admiralty Bay (King George Island, Antarctica) soils and marine sediments. Microb Ecol 77:12–24

    Article  ADS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee SJWT, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA et al (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 3–18

    Chapter  Google Scholar 

  • Zhang XY, Tang GL, Xu XY, Nong XH, Qi SH (2014) Insights into deep-Sea sediment fungal communities from the East Indian Ocean using targeted environmental sequencing combined with traditional cultivation. PLoS ONE 9:e109118

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Fei Wang N, Qin Zhang Y, Yu Liu H, Yan YuL (2015) Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic). Sci Rep 5:14524

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu D, Sethupathy S, Gao L, Nawaz MZ, Zhang W, Jiang J, Sun J (2022) Microbial diversity and community structure in deep-sea sediments of South Indian Ocean. Environ Sci Pollut Res 29:45793–45807

    Article  Google Scholar 

  • Zucconi L, Selbmann L, Buzzini P, Turchetti B, Guglielmin M, Frisvad JC, Onofri S (2012) Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biol 35:749–757

    Article  Google Scholar 

  • Zucconi L, Canini F, Temporiti ME, Tosi S (2020) Extracellular enzymes and bioactive compounds from Antarctic terrestrial fungi for bioprospecting. Int J Environ Res Public Health 17:6459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study received financial support from CNPq, PROANTAR, FAPEMIG and CAPES. P. Convey is supported by NERC core funding to the British Antarctic Survey’s ‘Biodiversity, Evolution and Adaptation’ Team.

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Author information

Authors and Affiliations

Authors

Contributions

MKS, DLCB, RV, AAN and LHR conceived the study. FSO performed the sediment physicochemical analysis. MKS, DLCB, RV, AAN, FSO, PC, AWFD, CAR and LHR analyzed the results and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Luiz Henrique Rosa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Oren.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 KB)

Supplementary file2 (DOCX 26 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.K., Barreto, D.L.C., Vieira, R. et al. Diversity and enzymatic, biosurfactant and phytotoxic activities of culturable Ascomycota fungi present in marine sediments obtained near the South Shetland Islands, maritime Antarctica. Extremophiles 28, 20 (2024). https://doi.org/10.1007/s00792-024-01336-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00792-024-01336-4

Keywords

Navigation