Skip to main content
Log in

Cultivable fungi present in deep-sea sediments of Antarctica: taxonomy, diversity, and bioprospecting of bioactive compounds

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

We accessed the culturable mycobiota present in marine sediments at different depths in Antarctica Ocean. Acremonium fusidioides, Penicillium allii-sativi, Penicillium chrysogenum, Penicillium palitans, Penicillium solitum, and Pseudogymnoascus verrucosus were identified. Penicillium allii-sativi was the dominant species. At least one isolate of each species was capable to present antifungal, trypanocidal, leishmanicidal, antimalarial, nematocidal, or herbicidal activities. Penicillium produced extracts with strong trypanocidal and antimalarial activities, and the extracts of P. solitum and P. chrysogenum demonstrated strong antimalarial activities. Acremonium fusidioides and P. verrucosus displayed strong selective herbicidal properties. The 1H NMR signals for extracts of A. fusidioides, P. chrysogenum, and P. solitum indicated the presence of highly functionalized secondary metabolites, which may be responsible for the biological activities detected. In the deep marine Antarctic sediments, we detected fungal assemblages in which the Penicillium species were found to be dominant and demonstrated capabilities to survive and/or colonise that poly-extreme habitat. Penicillium being a polyextremophile Antarctic species, exhibited strong biological activities and the presence of aromatic compounds in its extracts may indicate that they are wild ancient strains with high genetic and biochemical potentials that enable them to produce bioactive compounds which can be researched in further studies and used in the chemotherapy of neglected tropical diseases as well as in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antipova TV, Zhelifonova VP, Baskunov BP, Kochkina GA, Ozerskaya SM, Kozlovskii AG (2018) Exometabolites the Penicillium fungi isolated from various high-latitude ecosystems. Microbiology 87:642–651

    Article  CAS  Google Scholar 

  • Bézivin C, Tomasi S, Lohézic-Le Dévéhat F, Boustie J (2003) Cytotoxic activity of some lichen extracts on murine and human cancer cell lines. Phytomedicine 10:499–503

    Article  PubMed  Google Scholar 

  • Blanchflower SE, Banks RM, Evertt JR, Manger BR, Reading C (1991) New paraherquamide antibiotics with anthelmintic activity. J Antibiot 44:492–497

    Article  CAS  Google Scholar 

  • Blanchflower SE, Banks RM, Everett JR, Reading C (1993) Further novel metabolites of the paraherquamide family. J Antibiot 46:1355–1363

    Article  CAS  Google Scholar 

  • Borenfreund E, Babich H, Martin-Alguacil N (1988) Comparisons of two in vitro cytotoxicity assays: the neutral red, NR and tetrazolium MTT tests. Toxicol In Vitro 2:1–6

    Article  CAS  PubMed  Google Scholar 

  • Brunati M, Rojas JL, Sponga F, Ciciliato I, Losi D, Göttlich E et al (2009) Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar Genom 2:43–50

    Article  Google Scholar 

  • Burgaud G, Calvez TL, Arzur D, Vandenkoornhuyse P, Barbier G (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol 11:1588–1600

    Article  PubMed  Google Scholar 

  • Burgaud G, Hué NT, Arzur D, Coton M, Perrier-Cornet JM, Jebbar M, Barbier G (2015) Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents. Res Microbiol 166:700–709

    Article  PubMed  Google Scholar 

  • Callahan HL, Portal AC, Devereaux R, Grogl M (1997) An axenic amastigote system for drug screening. Antimicrob Agents Chemother 41:818–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damare S, Raghukumar C (2008) Fungi and macroaggregation in deep-sea sediments. Microb Ecol 53:14–27

    Google Scholar 

  • Damare S, Raghukumar C, Raghukumar S (2006) Fungi in deep-sea sediments of 563 the Central Indian Basin. Deep Sea Res Part I Oceanogr Res Pap 53:14–27

    Article  Google Scholar 

  • Dayan FE, Romagni JG, Duke SO (2000) Investigating the mode of action of natural phytotoxins. J Chem Ecol 26:2079–2094

    Article  CAS  Google Scholar 

  • de Hoog S, Guarro J, Gene J, Figueras MJ (2001) Atlas of clinical fungi, 2nd edn. ASM Press, Washington, DC

    Google Scholar 

  • do Céu de Madureira M, Martins AP, Gomes M, Paiva J, Da Cunha AP, Do Rosário V (2002) Antimalarial activity of medicinal plants used in traditional medicine in S Tomé and Príncipe islands. J Ethnopharmacol 81:23–29

    Article  PubMed  Google Scholar 

  • Duarte AW, Dayo-Owoyemi I, Nobre FS, Pagnocca FC, Chaud LC, Pessoa A, Felipe MG, Sette LD (2013) Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 17:1023–1035

    Article  CAS  PubMed  Google Scholar 

  • Duarte AW, Lopes A, Molino J, Pessoa A, Sette L (2015) Liquid–liquid extraction of lipase produced by psychrotrophic yeast Leucosporidium scottii L117 using aqueous two-phase systems. Separ Purif Technol 156:1–11

    Article  CAS  Google Scholar 

  • Figueroa L, Jiménez C, Rodríguez J, Areche C, Chávez R, Henríquez M et al (2015) 3-Nitroasterric acid derivatives from an Antarctic sponge-derived Pseudogymnoascus sp. fungus. J Nat Prod 78:919–923

    Article  CAS  PubMed  Google Scholar 

  • Fincher RM, Fisher JF, Lovell RD, Newman CL, Espinel-Ingroff A, Shadomy HJ (1991) Infection due to the fungus Acremonium (Cephalosporium). Medicine (Baltimore) 70:398–409

    Article  CAS  Google Scholar 

  • Furbino LE, Godinho VM, Santiago IF, Pellizari FM, Alves TMA, Zani CL et al (2014) Diversity patterns ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Microb Ecol 67:775–787

    Article  PubMed  Google Scholar 

  • Giudice AL, Azzaro M (2019) Diversity and ecological roles of prokaryotes in the changing antarctic marine environment. In: Castro S (ed) The ecological role of microorganisms in the Antarctic environment, 1st edn. Springer, Cham, pp 109–131

    Chapter  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godinho VM, Furbino LE, Santiago IF, Pellizzari FM, Yokoya NS, Pupo D et al (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:1434–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godinho VM, Gonçalves VN, Santiago IF, Figueredo HM, Vitoreli GA, Schaefer CE et al (2015) Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles 19:585–596

    Article  PubMed  Google Scholar 

  • Gomes ECQ, Godinho VM, Silva DAS, De Paula MTR, Vitoreli GA, Zani CL et al (2018) Cultivable fungi present in Antarctic soils: taxonomy phylogeny diversity and bioprospecting of antiparasitic and herbicidal metabolites. Extremophiles 22:381–393

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves VN, Campos L, Melo IS, Pellizari VH, Rosa CA, Rosa LH (2013) Penicillium solitum: a mesophilic psychrotolerant fungus present in marine sediments from Antarctica. Polar Biol 36:1823–1831

    Article  Google Scholar 

  • Gonçalves VN, Carvalho CR, Johann S, Mendes G, Alves TMA, Zani CL et al (2015) Antibacterial antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol 38:1143–1152

    Article  Google Scholar 

  • Gonçalves VN, Oliveira FS, Carvalho C, Schaefer CEG, Rosa CA, Rosa LH (2017) Antarctic rocks from continental Antarctica as source of potential human opportunistic fungi. Extremophiles 21:851–860

    Article  PubMed  Google Scholar 

  • Hatai K (2012) Diseases of fish and shellfish caused by marine fungi. In: Raghukumar C (ed) Biology of marine fungi progress in molecular and subcellular biology. Springer, Berlin, pp 15–51

    Google Scholar 

  • Holden-Dye L, Walker R (2014) Anthelmintic drugs and nematicides: studies in Caenorhabditis elegans. WormBook 16:1–29

    Article  Google Scholar 

  • Houbraken J, Frisvad JC, Seifert KA, Overy DP, Tuthill DM, Valdez JG et al (2012) New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia 29:78–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jebaraj CS, Raghukumar C, Behnke A, Stoeck T (2010) Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol Ecol 71:399–412

    Article  CAS  PubMed  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi. CAB International, Wallingford

    Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academy Press, New York

    Google Scholar 

  • Lai X, Cao L, Tan H, Fang S, Huang Y, Zhou S (2007) Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME J 1:756–762

    Article  CAS  PubMed  Google Scholar 

  • Le Calvez T, Burgaud G, Mahé S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li G, Zhang K, Xu J, Dong J, Liu Y (2007) Nematicidal substances from fungi. Recent Pat Biotechnol 1:212–233

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Sun B, Liu S, Jiang L, Liu X, Zhang H et al (2008) Bioactive asterric acid derivatives from the Antarctic ascomycete fungus Geomyces sp. J Nat Prod 71:1643–1646

    Article  CAS  PubMed  Google Scholar 

  • López-Garcia P, Rodriguez-Valera F, Pedros-Allo C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    Article  PubMed  Google Scholar 

  • Mitchell DH, Stiles JW, Santelli J, Sanadi DR (1979) Synchronous growth and aging of Caenorhabditis elegans in the presence of fluorodeoxyuridine. J Gerontol 34:28–36

    Article  CAS  PubMed  Google Scholar 

  • Mossman T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  • Muhammed M, Fuchs BB, Wu MP, Breger J, Coleman JJ, Mylonakis E (2012) The role of mycelium production and a MAPK-mediated immune response in the C. elegansFusarium model system. Med Mycol 50:488–496

    Article  CAS  PubMed  Google Scholar 

  • Nagahama T, Nagano Y (2012) Cultured and uncultured fungal diversity in deep-sea environments. In: Raghukumar C (ed) Biology of marine fungi progress in molecular and subcellular biology, vol 53. Springer, Berlin, pp 173–187

    Google Scholar 

  • Nagano Y, Nagahama T, Hatada Y, Nunoura T, Takami H, Miyazaki J et al (2010) Fungal diversity in deep-sea sediments—the presence of novel fungal groups. Fungal Ecol 3:316–325

    Article  Google Scholar 

  • Nascimento TCES, Sena AR, Gomes JEG, Santos WL, Montalvo GSA, Medeiros EV et al (2015) Extracellular serine proteases by Acremonium sp. L1–4B isolated from Antarctica: overproduction using cactus pear extract with response surface methodology. Biocatal Agric Biotechnol 4:737–744

    Article  Google Scholar 

  • NCCLS (2002) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard, M38-A. Natl Comm Clin Lab Stand 22:16

    Google Scholar 

  • Oduola AM, Weatherly NF, Bowdre JH, Desjardins RE (1988) Plasmodium falciparum: cloning by single-erythrocyte micromanipulation and heterogeneity in vitro. Exp Parasitol 66:86–95

    Article  CAS  PubMed  Google Scholar 

  • Ondeyka JG, Goegelman RT, Schaeffer JM, Kelemen L, Zitano L (1990) Novel antinematodal and antiparasitic agents from Penicillium charlesii I fermentation, isolation and biological activity. J Antibiot 38:1375–1379

    Article  Google Scholar 

  • Pang K, Overy DV, Jones DVG, Calado ML, Burgaud G, Walker AK, Johnson JA, Kerr RG, Cha HJ, Bills GF (2016) ‘Marine fungi’ and ‘marine-derived fungi’ in natural product chemistry research: Toward a new consensual definition. Fungal Biol Rev 30:163–175

    Article  Google Scholar 

  • Porta-de-la-Riva M, Fontrodona L, Villanueva A, Cerón J (2012) Basic Caenorhabditis elegans methods: synchronization and observation. J Vis Exp 10:e4019

    Google Scholar 

  • Raghukumar C, Damare SR, Singh P (2010) A review on deep-sea fungi occurrence, diversity and adaptations. Bot Mar 53:479–492

    Article  Google Scholar 

  • Rateb ME, Ebel R (2011) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28:290–344

    Article  CAS  PubMed  Google Scholar 

  • Redou V, Navarri M, Meslet-Cladière L, Barbier G, Burgaud G (2015) Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol 81:3571–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren J, Yang Y, Liu D, Chen W, Proksch P, Bm S et al (2013) Sequential determination of new peptaibols asperelines G-Z12 produced by marine-derived fungus Trichoderma asperellum using ultrahigh pressure liquid chromatography combined with electrospray-ionization tandem mass spectrometry. J Chromatogr 1309:90–95

    Article  CAS  Google Scholar 

  • Romanha AJ, De Castro SL, Soeiro MNC, Lannes-Vieira J, Ribeiro I, Talvani A et al (2010) In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem Inst Oswaldo Cruz 105:233–238

    Article  CAS  PubMed  Google Scholar 

  • Rosa LH, Vaz AB, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv, (Poaceae). Polar Biol 32:161–167

    Article  Google Scholar 

  • Rosa LH, Pellizari FM, Ogaki MB, De Paula MT, Mansilla A, Brito AA et al (2019a) Sub Antarctic and Antarctic marine ecosystems: an unexplored ecosystem of fungal diversity. In: Rosa LH (ed) Fungi of Antarctica: diversity, ecology and biotechnological applications. Springer, Berlin, pp 221–242

    Chapter  Google Scholar 

  • Rosa LH, Zani CL, Cantrell CL, Duke SO, Dijck PV, Desideri A, Rosa CA (2019b) Fungi in Antarctica: diversity, ecology, effects of climate change, and bioprospection for bioactive compounds. In: Rosa LH (ed) Fungi of Antarctica, 1st edn. Springer, Cham, pp 1–17

    Chapter  Google Scholar 

  • Roth FJ, Orpurt PA, Ahearn DJ (1964) Occurrence and distribution of fungi in a subtropical marine environment. Can J Bot 42:375–383

    Article  Google Scholar 

  • Santiago IF, Soares MA, Rosa CA, Rosa LH (2015) Lichensphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica. Extremophiles 19:1087–1097

    Article  PubMed  Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2012) Assessment of fungal diversity in deep-sea sediments by multiple primer approach. World J Microbiol Biotechnol 28:659–667

    Article  CAS  PubMed  Google Scholar 

  • Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M (2004) Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother 48:1803–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonjak S, Frisvad JC, Gunde-Cimerman N (2006) Penicillium mycobiota in arctic subglacial ice. Microb Ecol 52:207–216

    Article  PubMed  Google Scholar 

  • Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152:279–285

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaler AD, Dover CLV, Vilgalys R (2012) Ascomycete phylotypes recovered from a Gulf of Mexico methane seep are identical to an uncultured deep-sea fungal clade from the Pacific. Fungal Ecol 5:270–273

    Article  Google Scholar 

  • Tian J, Lai D, Zhou L (2017) Secondary metabolites from Acremonium fungi: diverse structures and bioactivities. Med Chem 17:603–632

    CAS  Google Scholar 

  • Tosi S, Casado B, Gerdol R (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268

    Article  Google Scholar 

  • Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193:673–675

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns TD, Lee SB (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis NA, Gelfand J, Sninsky J, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Acad Natl Sci USA 95:578–6583

    Article  Google Scholar 

  • Xiao AN, Feng B, Chen G, Chen S, Wang H, Pei Y (2016) Isolation and identification of two new compounds from marine-derived fungus Acremonium fusidioides RZ01. Chin J Nat Med 14:934–938

    Google Scholar 

  • Zhang X, Tang G, Xu X, Nong X, Qi S (2014) Insights into deep-sea sediment fungal communities from the east Indian Ocean using targeted environmental sequencing combined with traditional cultivation. PLoS One 9:e109118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from CNPq PROANTAR 442258/2018-6, INCT Criosfera II, CNPq, FAPEMIG, and FNDCT. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. We are thankful to the Laboratório de Ressonância Magnética Nuclear de Alta Resolução (LAREMAR/UFMG) and IS Lula for the NMR experiments. The authors thank the Program for Technological Development of Tools for Health-PDTIS-Fiocruz for use of its facilities (Bioprospection and Chagas disease-PlaBio Tc platforms). PASJ is research fellow supported by Programa de Pós-graduação em Ciências da Saúde, Fiocruz Minas (CAPES/PNPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz H. Rosa.

Additional information

Communicated by A. Oren.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogaki, M.B., Coelho, L.C., Vieira, R. et al. Cultivable fungi present in deep-sea sediments of Antarctica: taxonomy, diversity, and bioprospecting of bioactive compounds. Extremophiles 24, 227–238 (2020). https://doi.org/10.1007/s00792-019-01148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-019-01148-x

Keywords

Navigation