Skip to main content
Log in

LC–ELISA as a contribution to the assessment of matrix effects with environmental water samples in an immunoassay for estrone (E1)

  • General Paper
  • Published:
Accreditation and Quality Assurance Aims and scope Submit manuscript

Abstract

Estrone (E1), a metabolite of the estrogenic hormones 17β-estradiol (β-E2) and 17α-estradiol (α-E2), is itself a potent estrogen which can have a significant impact on the hormonal balance. Due to its high potential for adverse effects on human health and aquatic life even at pg/L to ng/L levels, its appearance in water should be monitored. E1 has also been considered a marker substance for the presence of other estrogens. This study presents a newly developed direct competitive enzyme-linked immunosorbent assay (ELISA) for quantification of E1 in environmental water samples using new monoclonal antibodies. The quantification range of the ELISA is 0.15 µg/L to 8.7 µg/L E1, and the limit of detection is around 60 ng/L for not pre-concentrated water samples. A pre-concentration step after careful selection of suitable phases for SPE was developed, too. The influence of organic solvents and natural organic matter on the ELISA was assessed. The high selectivity of the monoclonal antibody was demonstrated by determining the cross-reactivity against 20 structurally related compounds. For the assessment of matrix effects, a concept (“LC–ELISA”) is thoroughly exploited, i.e., separating complex samples by HPLC into 0.3 min fractions and determination of the apparent E1 concentration. Furthermore, fractions with interferences for nontarget/suspected-target analysis can be assigned. A dilution approach was applied to distinguish between specific interferences (cross-reactants) and non-specific interferences (matrix effects). In the determination of 18 environmental samples, a good agreement of the E1 concentration in the respective fractions was obtained with mean recoveries of 103 % to 132 % comparing ELISA to LC–MS/MS.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sneader W (2005) Drug discovery: a history. Wiley, Chichester, UK. ISBN-10 0-471-89979-8

    Book  Google Scholar 

  2. Kortenkamp A, Martin O, Faust M, Evans R, McKinlay R, Orton F, Rosivatz E (2011) State of the art assessment of endocrine disrupters. Final Report, Project Contract Number 070307/2009/550687/SER/D3, 23/11/2011. http://ec.europa.eu/environment/chemicals/endocrine/pdf/sota_edc_final_report.pdf

  3. Ying GG, Kookana RS, Ru YJ (2002) Occurrence and fate of hormone steroids in the environment. Environ Int 28(6):545–551. https://doi.org/10.1016/S0160-4120(02)00075-2

    Article  CAS  Google Scholar 

  4. Fredj SB, Nobbs J, Tizaoui C, Monsera L (2015) Removal of estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2) from wastewater by liquid–liquid extraction. Chem Eng J 262:417–426. https://doi.org/10.1016/j.cej.2014.10.007

    Article  CAS  Google Scholar 

  5. European Parliament and Council Directive 2000/60/EC9. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32000L0060&from=EN. Accessed 11 Nov 2017

  6. Petrović M, Gonzalez S, Barceló D (2003) Analysis and removal of emerging contaminants in wastewater and drinking water. TrAC Trends Anal Chem 22(10):685–696. https://doi.org/10.1016/S0165-9936(03)01105-1

    Article  CAS  Google Scholar 

  7. Dolar D, Gros M, Rodriguez-Mozaz S, Moreno J, Comas J, Rodriguez-Roda I, Barceló D (2012) Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR-RO. J Hazard Mater 239–240:64–69. https://doi.org/10.1016/j.jhazmat.2012.03.029

    Article  CAS  PubMed  Google Scholar 

  8. Routledge EJ, Sheahan D, Desbrow C, Brighty GC, Waldock M, Sumpter JP (1998) Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach. Environ Sci Technol 32:1559–1565

    Article  CAS  Google Scholar 

  9. Ternes TA, Stumpf M, Mueller J, Haberer K, Wilken RD, Servos M (1999) Behavior and occurrence of estrogens in municipal sewage treatment plants–I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225(1–2):81–90

    Article  CAS  Google Scholar 

  10. Ternes TA, Kreckel P, Mueller J (1999) Behaviour and occurrence of estrogens in municipal sewage treatment plants–II. Aerobic batch experiments with activated sludge. Sci Total Environ 225(1–2):91–99

    Article  CAS  Google Scholar 

  11. Bertanza G, Pedrazzani R, Zambarda V, Grande MD, Icarelli F, Baldassarre L (2010) Removal of endocrine disrupting compounds from wastewater treatment plant effluents by means of advanced oxidation. Water Sci Technol 61(7):1663–1671. https://doi.org/10.2166/wst.2010.132

    Article  CAS  PubMed  Google Scholar 

  12. Becker D, Rodriguez-Mozaz S, Insa S, Schoevaart R, Barceló D, de Cazes M, Belleville M-P, Sanchez-Marcano J, Misovic A, Oehlmann J, Wagner M (2017) Removal of endocrine disrupting chemicals in wastewater by enzymatic treatment with fungal laccases. Org Process Res Dev 21(4):480–491. https://doi.org/10.1021/acs.oprd.6b00361

    Article  CAS  Google Scholar 

  13. Pacáková V, Loukotková L, Bosáková Z, Štulík K (2009) Analysis for estrogens as environmental pollutants: a review. J Sep Sci 32(5–6):867–882

    PubMed  Google Scholar 

  14. Segura PA, Kaplan P, Yargeau V (2013) Identification and structural elucidation of ozonation transformation products of estrone. Chem Cent J 7(1):74

    Article  Google Scholar 

  15. Steimer W (1999) Performance and specificity of monoclonal immunoassays for cyclosporine monitoring: how specific is specific? Clin Chem 45(3):371–381

    CAS  PubMed  Google Scholar 

  16. Dzuman Z, Vaclavikova M, Polisenska I, Veprikova Z, Fenclova M, Zachariasova M, Hajslova J (2014) Enzyme-linked immunosorbent assay in analysis of deoxynivalenol: investigation of the impact of sample matrix on results accuracy. Anal Bioanal Chem 406(2):505–514. https://doi.org/10.1007/s00216-013-7463-3

    Article  CAS  PubMed  Google Scholar 

  17. Manickum T, John W (2015) The current preference for the immuno-analytical ELISA method for quantitation of steroid hormones (endocrine disruptor compounds) in wastewater in South Africa. Anal Bioanal Chem 407(17):4949–4970. https://doi.org/10.1007/s00216-015-8546-0

    Article  CAS  PubMed  Google Scholar 

  18. Farré M, Brix R, Kuster M, Rubio F, Goda Y, López de Alda MJ, Barceló D (2006) Evaluation of commercial immunoassays for the detection of estrogens in water by comparison with high-performance liquid chromatography tandem mass spectrometry HPLC-MS/MS (QqQ). Anal Bioanal Chem 385(6):1001–1011. https://doi.org/10.1007/s00216-006-0562-7

    Article  CAS  PubMed  Google Scholar 

  19. Wooding KM, Hankin JA, Johnson CA, Chosich JD, Baek SW, Bradford AP, Murphy RC, Santoro N (2015) Measurement of estradiol, estrone, and testosterone in postmenopausal human serum by isotope dilution liquid chromatography tandem mass spectrometry without derivatization. Steroids 96:89–94

    Article  CAS  Google Scholar 

  20. Giton F, Sirab N, Franck G, Gervais M, Schmidlin F, Ali T, Allory Y, Taille A, Vacherot F, Loric S, Fiet J (2015) Evidence of estrone-sulfate uptake modification in young and middle-aged rat prostate. J Steroid Biochem Mol Biol 152:89–100. https://doi.org/10.1016/j.jsbmb.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  21. Advanced Nutrition Publications Inc.: Applied Nutritional Science Reports (2001) Nutritional Influences on Estrogen Metabolism, pp. 1–8. http://www.oakwayhealthcenter.com/store/MET_Nutritional-Influence-on-Estrogen-Metabolism.pdf

  22. Silva CP, Lima DLD, Schneider RJ, Otero M, Esteves VI (2013) Development of ELISA methodologies for the direct determination of 17β-estradiol and 17α-ethinylestradiol in complex aqueous matrices. J Environ Manag 124:121–127. https://doi.org/10.1016/j.jenvman.2013.03.041

    Article  CAS  Google Scholar 

  23. Lima DL, Schneider RJ, Esteves VI (2013) Development of an enzyme-linked immunosorbent assay for atrazine monitoring in water samples. Environ Sci Pollut Res 20(5):3157–3164. https://doi.org/10.1007/s11356-012-1227-z

    Article  CAS  Google Scholar 

  24. Farré M, Kuster M, Brix R, Rubio F, López de Alda MJL, Barceló D (2007) Comparative study of an estradiol enzyme-linked immunosorbent assay kit, liquid chromatography-tandem mass spectrometry, and ultra performance liquid chromatography-quadrupole time of flight mass spectrometry for part-per-trillion analysis of estrogens in water samples. J Chromatogr A 1160(1–2):166–175. https://doi.org/10.1016/j.chroma.2007.05.032

    Article  CAS  PubMed  Google Scholar 

  25. Zühlke J, Knopp D, Nießner R (1998) Determination of 1-nitropyrene with enzyme-linked immunosorbent assay versus high-performance column switching technique. J Chromatogr A 807(2):209–217. https://doi.org/10.1016/S0021-9673(98)00081-8

    Article  PubMed  Google Scholar 

  26. Lima DLD, Silva CP, Schneider RJ, Esteves VI (2011) Development of an ELISA procedure to study sorption of atrazine onto a sewage sludge-amended luvisol soil. Talanta 85(3):1494–1499. https://doi.org/10.1016/j.talanta.2011.06.024

    Article  CAS  PubMed  Google Scholar 

  27. Sheng W, Xia XF, Wei KY, Li J, Li QX, Xu T (2009) Determination of marbofloxacin residues in beef and pork with an enzyme-linked immunosorbent assay. J Agric Food Chem 57(13):5971–5975. https://doi.org/10.1021/jf900940n

    Article  CAS  PubMed  Google Scholar 

  28. Peruski AH, Johnson LH, Peruski LF (2002) Rapid and sensitive detection of biological warfare agents using time-resolved fluorescence assays. J Immunol Methods 263(1–2):35–41. https://doi.org/10.1016/S0022-1759(02)00030-3

    Article  CAS  PubMed  Google Scholar 

  29. Deng AP, Himmelsbach M, Zhu QZ, Frey S, Sengl M, Buchberger W, Niessner R, Knopp D (2003) Residue analysis of the pharmaceutical diclofenac in different water types using ELISA and GC-MS. Environ Sci Technol 37(15):3422–3429. https://doi.org/10.1021/es0341945

    Article  CAS  PubMed  Google Scholar 

  30. Valentini F, Compagnone D, Gentili A, Palleschi G (2002) An electrochemical ELISA procedure for the screening of 17β-estradiol in urban waste waters. Analyst 127(10):1333–1337. https://doi.org/10.1039/b204826b

    Article  CAS  PubMed  Google Scholar 

  31. Guo Q, Gao G, Qian SY, Mason RP (2004) Novel identification of a sulfur-centered, radical-derived 5,5-dimethyl-1-pyrroline N-oxide nitrone adduct formed from the oxidation of DTT by LC/ELISA, LC/electrospray ionization-MS, and LC/tandem MS. Chem Res Toxicol 17(11):1481–1490. https://doi.org/10.1021/tx049837o

    Article  CAS  PubMed  Google Scholar 

  32. Lardinois OM, Detweiler CD, Tomer KB, Mason RP, Deterding LJ (2008) Identifying the site of spin trapping in proteins by a combination of liquid chromatography, ELISA, and off-line tandem mass spectrometry. Free Radical Biol Med 44(5):893–906. https://doi.org/10.1016/j.freeradbiomed.2007.11.015

    Article  CAS  Google Scholar 

  33. Zhou CQ, Wang QS (2011) Epitopic peptides identified by LC–ELISA and LC–MS. Chromatographia 73(9–10):879–887. https://doi.org/10.1007/s10337-011-1988-4

    Article  CAS  Google Scholar 

  34. Hradecká V, Novák O, Havlíček L, Strnad M (2007) Immunoaffinity chromatography of abscisic acid combined with electrospray liquid chromatography-mass spectrometry. J Chromatogr B 847(2):162–173. https://doi.org/10.1016/j.jchromb.2006.09.034

    Article  CAS  Google Scholar 

  35. Salste L, Leskinen P, Virta M, Kronberg L (2007) Determination of estrogens and estrogenic activity in wastewater effluent by chemical analysis and the bioluminescent yeast assay. Sci Total Environ 378(3):343–351

    Article  CAS  Google Scholar 

  36. Carvalho AR, Cardoso VV, Rodrigues A, Ferreira E, Benoliel MJ, Duarte EA (2015) Occurrence and analysis of endocrine-disrupting compounds in a water supply system. Environ Monit Assess 187(3):139. https://doi.org/10.1007/s10661-015-4374-0

    Article  CAS  PubMed  Google Scholar 

  37. Mohagheghian A, Nabizadeh R, Mesdghinia A, Rastkari N, Mahvi AH, Alimohammadi M, Yunesian M, Ahmadkhaniha R, Nazmara S (2014) Distribution of estrogenic steroids in municipal wastewater treatment plants in Tehran, Iran. J Environ Health Sci Eng 12:97. https://doi.org/10.1186/2052-336X-12-97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stafiej A, Pyrzynska K, Regan F (2007) Determination of anti-inflammatory drugs and estrogens in water by HPLC with UV detection. J Sep Sci 30(7):985–991

    Article  CAS  Google Scholar 

  39. http://www.humicsubstances.org/sources.html. Accessed 11 Nov 2017

  40. Kuhne M, Dippong M, Flemig S, Hoffmann K, Petsch K, Schenk JA, Kunte HJ, Schneider RJ (2014) Comparative characterization of mAb producing hapten-specific hybridoma cells by flow cytometric analysis and ELISA. J Immunol Methods 413:45–56. https://doi.org/10.1016/j.jim.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  41. Grandke J, Oberleitner L, Resch-Genger U, Garbe LA, Schneider RJ (2013) Quality assurance in immunoassay performance—comparison of different enzyme immunoassays for the determination of caffeine in consumer products. Anal Bioanal Chem 405(5):1601–1611. https://doi.org/10.1007/s00216-012-6596-0

    Article  CAS  PubMed  Google Scholar 

  42. Dudley RA, Edwards P, Ekins RP, Finney DJ, Mckenzie IGM, Raab GM, Rodbard D, Rodgers RPC (1985) Guidelines for immunoassay data-processing. Clin Chem 31(8):1264–1271

    CAS  PubMed  Google Scholar 

  43. Ekins RP (1981) The precision profile: its use in RIA assessment and design. Ligand Q 4:33–44

    Google Scholar 

  44. Hayashi Y, Matsuda R, Maitani T, Imai K, Nishimura W, Ito K, Maeda M (2004) Precision, limit of detection and range of quantitation in competitive ELISA. Anal Chem 76(5):1295–1301. https://doi.org/10.1021/ac0302859

    Article  CAS  PubMed  Google Scholar 

  45. Hoffmann H, Baldofski S, Hoffmann K, Flemig S, Silva CP, Esteves VI, Emmerling F, Panne U, Schneider RJ (2016) Structural considerations on the selectivity of an immunoassay for sulfamethoxazole. Talanta 158:198–207. https://doi.org/10.1016/j.talanta.2016.05.049

    Article  CAS  PubMed  Google Scholar 

  46. Wang S, Xu Z, Fang G, Zhang Y, Liu B, Zhu H (2009) Development of a biomimetic enzyme-linked immunosorbent assay method for the determination of estrone in environmental water using novel molecularly imprinted films of controlled thickness as artificial antibodies. J Agric Food Chem 57(11):4528–4534. https://doi.org/10.1021/jf900505k

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The first author would like to thank BAM for a grant from its Ph.D programme Menschen Ideen MI1-2013-92. Berliner Wasserbetriebe is acknowledged for wastewater sampling. The authors would like to acknowledge the useful and constructive suggestions of the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf J. Schneider.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffmann, H., Knizia, C., Kuhne, M. et al. LC–ELISA as a contribution to the assessment of matrix effects with environmental water samples in an immunoassay for estrone (E1). Accred Qual Assur 23, 349–364 (2018). https://doi.org/10.1007/s00769-018-1351-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00769-018-1351-7

Keywords

Navigation