Skip to main content

Advertisement

Log in

Effects of acute doses of methylphenidate on inflammation and oxidative stress in isolated hippocampus and cerebral cortex of adult rats

  • Translational Neurosciences - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Methylphenidate (MPH) is a stimulatory agent in brain with unknown long-term consequences. In this study, MPH-induced neurodegeneration in adult rat brain was assessed. Rats were acutely treated with different doses of MPH. Open Field Test was used to investigate anxiety and depression levels. Inflammatory factors and anti-oxidant activity were also evaluated in isolated hippocampus and cerebral cortex. MPH treated groups (10 and 20 mg/kg) demonstrated anxiety and depression like behavior in OFT. MPH significantly increased lipid peroxidation, GSSG level, IL-1β and TNF-α in isolated tissues. In addition, MPH at the same doses (10 and 20 mg/kg) reduced GSH, superoxide dismutase, glutathione peroxidase and glutathione reductase activity significantly in hippocampus and cerebral cortex. In conclusion, acute administration of high doses of MPH can cause oxidative and inflammatory changes in brain cells and induce neurodegeneration in hippocampus and cerebral cortex of adult rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Biała G, Kruk M (2006) Amphetamine-induced anxiety-related behavior in animal models. Pharmacol Rep PR 59(6):636–644

    Google Scholar 

  • Bogle KE, Smith BH (2009) Illicit methylphenidate use: a review of prevalence, availability, pharmacology, and consequences. Curr Drug Abuse Rev 2(2):157–176

    Article  PubMed  Google Scholar 

  • Botham P (2004) Acute systemic toxicity—prospects for tiered testing strategies. Toxicol In Vitro 18(2):227–230

    Article  CAS  PubMed  Google Scholar 

  • Cadet JL, Jayanthi S, Mccoy MT, Vawter M, Ladenheim B (2001) Temporal profiling of methamphetamine-induced changes in gene expression in the mouse brain: evidence from cDNA array. Synapse 41(1):40–48

    Article  CAS  PubMed  Google Scholar 

  • Carr WJ, Oberley-Deegan RE, Zhang Y, Oberley CC, Oberley LW, Dunnwald M (2011) Antioxidant proteins and reactive oxygen species are decreased in a murine epidermal side population with stem cell-like characteristics. Histochem Cell Biol 135(3):293–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrey N, McFadyen MP, Brown RE (2000) Effects of subchronic methylphenidate hydrochloride administration on the locomotor and exploratory behavior of prepubertal mice. J Child Adolesc Psychopharmacol 10(4):277–286

    Article  CAS  PubMed  Google Scholar 

  • Chaki S, Kawashima N, Suzuki Y, Shimazaki T, Okuyama S (2003) Cocaine-and amphetamine-regulated transcript peptide produces anxiety-like behavior in rodents. Eur J Pharmacol 464(1):49–54

    Article  CAS  PubMed  Google Scholar 

  • Challman TD and Lipsky JJ (2000) Methylphenidate: its pharmacology and uses. In: Mayo clinic proceedings. Elsevier, pp 711–721

  • Chen L-E, Wu F, Xin Y, Zhao A, Sun X, Zhan H (2013) Effect of high sustained+ Gz stress on myocardial mitochondrial ultrastructure, respiratory function, and antioxidant capacity in rats. J Physiol Sci 63(6):457–464

    Article  CAS  PubMed  Google Scholar 

  • Comim CM, Gomes KM, Réus GZ, Petronilho F, Ferreira GK, Streck EL, Dal-Pizzol F, Quevedo J (2014) Methylphenidate treatment causes oxidative stress and alters energetic metabolism in an animal model of attention-deficit hyperactivity disorder. Acta Neuropsychiatr 26(02):96–103

    Article  PubMed  Google Scholar 

  • Davids E, Zhang K, Tarazi FI, Baldessarini RJ (2002) Stereoselective effects of methylphenidate on motor hyperactivity in juvenile rats induced by neonatal 6-hydroxydopamine lesioning. Psychopharmacology 160(1):92–98

    Article  CAS  PubMed  Google Scholar 

  • Fagundes AO, Rezin GT, Zanette F, Grandi E, Assis LC, Dal-Pizzol F, Quevedo J, Streck EL (2007) Chronic administration of methylphenidate activates mitochondrial respiratory chain in brain of young rats. Int J Dev Neurosci 25(1):47–51

    Article  CAS  PubMed  Google Scholar 

  • Fagundes AO, Scaini G, Santos PM, Sachet MU, Bernhardt NM, Rezin GT, Valvassori SS, Schuck PF, Quevedo J, Streck EL (2010) Inhibition of mitochondrial respiratory chain in the brain of adult rats after acute and chronic administration of methylphenidate. Neurochem Res 35(3):405–411

    Article  CAS  PubMed  Google Scholar 

  • Gomes KM, Petronilho FC, Mantovani M, Garbelotto T, Boeck CR, Dal-Pizzol F, Quevedo J (2008) Antioxidant enzyme activities following acute or chronic methylphenidate treatment in young rats. Neurochem Res 33(6):1024–1027

    Article  CAS  PubMed  Google Scholar 

  • Gomes KM, Comim CM, Valvassori SS, Réus GZ, Inácio CG, Martins MR, Souza RP, Quevedo J (2010) Diurnal differences in memory and learning in young and adult rats treated with methylphenidate. J Neural Transm 117(4):457–462

    Article  CAS  PubMed  Google Scholar 

  • Gopal K, Miller B, Gross G (2007) Acute and sub-chronic functional neurotoxicity of methylphenidate on neural networks in vitro. J Neural Transm 114(11):1365–1375

    Article  CAS  PubMed  Google Scholar 

  • Hall A, Henry J (2006) Acute toxic effects of ‘Ecstasy’(MDMA) and related compounds: overview of pathophysiology and clinical management. Br J Anaesth 96(6):678–685

    Article  CAS  PubMed  Google Scholar 

  • Handen BL, Johnson CR, Lubetsky M (2000) Efficacy of methylphenidate among children with autism and symptoms of attention-deficit hyperactivity disorder. J Autism Dev Disord 30(3):245–255

    Article  CAS  PubMed  Google Scholar 

  • Harold C, Wallace T, Friedman R, Gudelsky G, Yamamoto B (2000) Methamphetamine selectively alters brain glutathione. Eur J Pharmacol 400(1):99–102

    Article  CAS  PubMed  Google Scholar 

  • Huss M, Lehmkuhl U (2001) Methylphenidate and substance abuse: a review of pharmacology, animal, and clinical studies. J Atten Disord 6:S65–S71

    Google Scholar 

  • Hyttel J, Nielsen J, Nowak G (1992) The acute effect of sertindole on brain 5-HT2, D2 and α1 receptors (ex vivo radioreceptor binding studies). J Neural Transm 89(1–2):61–69

    Article  CAS  Google Scholar 

  • Ilic TV, Korchounov A, Ziemann U (2003) Methylphenidate facilitates and disinhibits the motor cortex in intact humans. Neuroreport 14(5):773–776

    Article  CAS  PubMed  Google Scholar 

  • Jones Z, Dafny N (2014) Acute and chronic dose–response effect of methylphenidate on ventral tegmental area neurons correlated with animal behavior. J Neural Transm 121(3):327–345

    Article  CAS  PubMed  Google Scholar 

  • Kita T, Wagner GC, Nakashima T (2003) Current research on methamphetamine-induced neurotoxicity: animal models of monoamine disruption. J Pharmacol Sci 92(3):178–195

    Article  CAS  PubMed  Google Scholar 

  • Krasnova IN, Cadet JL (2009) Methamphetamine toxicity and messengers of death. Brain Res Rev 60(2):379–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuczenski R, Segal DS (2002) Exposure of adolescent rats to oral methylphenidate: preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to methamphetamine. J Neurosci 22(16):7264–7271

    CAS  PubMed  Google Scholar 

  • Martins MR, Reinke A, Petronilho FC, Gomes KM, Dal-Pizzol F, Quevedo J (2006) Methylphenidate treatment induces oxidative stress in young rat brain. Brain Res 1078(1):189–197

    Article  CAS  PubMed  Google Scholar 

  • McNamara CG, Davidson ES, Schenk S (1993) A comparison of the motor-activating effects of acute and chronic exposure to amphetamine and methylphenidate. Pharmacol Biochem Behav 45(3):729–732

    Article  CAS  PubMed  Google Scholar 

  • Mitsopoulos P, Suntres ZE (2011) Protective effects of liposomal N-acetylcysteine against paraquat-induced cytotoxicity and gene expression. J Toxicol 2011:808967

    Article  PubMed  PubMed Central  Google Scholar 

  • Moghaddasi M, Javanmard SH, Reisi P, Tajadini M, Taati M (2014) The effect of regular exercise on antioxidant enzyme activities and lipid peroxidation levels in both hippocampi after occluding one carotid in rat. J Physiol Sci 64(5):325–332

    Article  CAS  PubMed  Google Scholar 

  • Motaghinejad M, Motevalian M (2016) Involvement of AMPA/kainate and GABA A receptors in topiramate neuroprotective effects against methylphenidate abuse sequels involving oxidative stress and inflammation in rat isolated hippocampus. Eur J Pharmacol 784:181–191

    Article  CAS  PubMed  Google Scholar 

  • Motaghinejad M, Karimian M, Motaghinejad O, Shabab B, Yazdani I, Fatima S (2015a) Protective effects of various dosage of Curcumin against morphine induced apoptosis and oxidative stress in rat isolated hippocampus. Pharmacol Rep 67(2):230–235

    Article  CAS  PubMed  Google Scholar 

  • Motaghinejad M, Karimian SM, Motaghinejad O, Shabab B, Asadighaleni M, Fatima S (2015b) The effect of various morphine weaning regimens on the sequelae of opioid tolerance involving physical dependency, anxiety and hippocampus cell neurodegeneration in rats. Fundam Clin Pharmacol 29(3):299–309

    Article  CAS  PubMed  Google Scholar 

  • Motaghinejad M, Motevalian M, Ebrahimzadeh A (2015c) Reduction of methylphenidate induced anxiety, depression and cognition impairment by various doses of venlafaxine in rat. Int J Prev Med 6:52–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Motaghinejad M, Motevalian M, Larijani SF, Khajehamedi Z (2015d) Protective effects of forced exercise against methylphenidate-induced anxiety, depression and cognition impairment in rat. Adv Biomed Res 27(4):134–139

    Article  Google Scholar 

  • Motaghinejad M, Motevalian M, Shabab B (2015e) Effects of chronic treatment with methylphenidate on oxidative stress and inflammation in hippocampus of adult rats. Neurosci Lett 21(619):106–113

    Google Scholar 

  • Motaghinejad M, Motevalian M, Shabab B (2016a) Neuroprotective effects of various doses of topiramate against methylphenidate induced oxidative stress and inflammation in rat isolated hippocampus. Clin Exp Pharmacol Physiol 43(3):360–371

    Article  CAS  PubMed  Google Scholar 

  • Motaghinejad M, Seyedjavadein Z, Motevalian M, Asadi M (2016b) The neuroprotective effect of lithium against high dose methylphenidate: possible role of BDNF. NeuroToxicology 56:40–54

    Article  CAS  PubMed  Google Scholar 

  • Niknahada H, Taghdirib A, Mohammadi-Bardborib A, Mehrabadib AR (2010) Protective effect of captopril against doxorubicin-induced oxidative stress in isolated rat liver mitochondria. Iran J Pharm Sci 6(2):91–98

    Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167

    Article  CAS  PubMed  Google Scholar 

  • Réus GZ, Scaini G, Furlanetto CB, Morais MO, Jeremias IC, Mello-Santos LM, Freitas KV, Quevedo J, Streck EL (2013) Methylphenidate treatment leads to abnormalities on krebs cycle enzymes in the brain of young and adult rats. Neurotox Res 24(2):251–257

    Article  PubMed  Google Scholar 

  • Rush CR, Baker RW (2001) Behavioral pharmacological similarities between methylphenidate and cocaine in cocaine abusers. Exp Clin Psychopharmacol 9(1):59–65

    Article  CAS  PubMed  Google Scholar 

  • Sandoval V, Riddle EL, Hanson GR, Fleckenstein AE (2003) Methylphenidate alters vesicular monoamine transport and prevents methamphetamine-induced dopaminergic deficits. J Pharmacol Exp Ther 304(3):1181–1187

    Article  CAS  PubMed  Google Scholar 

  • Schmitz F, da Silva Scherer EB, da Cunha MJ, da Cunha AA, Lima DD, Delwing D, Netto CA, de Souza Wyse AT (2012a) Chronic methylphenidate administration alters antioxidant defenses and butyrylcholinesterase activity in blood of juvenile rats. Mol Cell Biochem 361(1–2):281–288

    Article  CAS  PubMed  Google Scholar 

  • Schmitz F, Scherer EB, Machado FR, da Cunha AA, Tagliari B, Netto CA, Wyse AT (2012b) Methylphenidate induces lipid and protein damage in prefrontal cortex, but not in cerebellum, striatum and hippocampus of juvenile rats. Metab Brain Dis 27(4):605–612

    Article  CAS  PubMed  Google Scholar 

  • Thomas DM, Walker PD, Benjamins JA, Geddes TJ, Kuhn DM (2004) Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J Pharmacol Exp Ther 311(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Tocharus J, Khonthun C, Chongthammakun S, Govitrapong P (2010) Melatonin attenuates methamphetamine-induced overexpression of pro-inflammatory cytokines in microglial cell lines. J Pineal Res 48(4):347–352

    Article  CAS  PubMed  Google Scholar 

  • Trinh T, Kohllepel S, Yang P, Burau K, Dafny N (2013) Adult female rats’ altered diurnal locomotor activity pattern following chronic methylphenidate treatment. J Neural Transm 120(12):1717–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vendruscolo LF, Izídio GS, Takahashi RN, Ramos A (2008) Chronic methylphenidate treatment during adolescence increases anxiety-related behaviors and ethanol drinking in adult spontaneously hypertensive rats. Behav Pharmacol 19(1):21–27

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Wang G-J, Tomasi D, Kollins SH, Wigal TL, Newcorn JH, Telang FW, Fowler JS, Logan J, Wong CT (2012) Methylphenidate-elicited dopamine increases in ventral striatum are associated with long-term symptom improvement in adults with attention deficit hyperactivity disorder. J Neurosci 32(3):841–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilens TE, Spencer TJ, Biederman J (2001) A review of the pharmacotherapy of adults with attention-deficit/hyperactivity disorder. J Atten Disord 5(4):189–202

    Article  Google Scholar 

  • Yamamoto BK, Bankson MG (2005) Amphetamine neurotoxicity: cause and consequence of oxidative stress. Crit Rev™ Neurobiol 17(2):25–41

    Google Scholar 

Download references

Acknowledgments

This research was supported by Iran University of Medical Sciences and Iran hormone pharmaceutical company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manijeh Motevalian.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motaghinejad, M., Motevalian, M., Shabab, B. et al. Effects of acute doses of methylphenidate on inflammation and oxidative stress in isolated hippocampus and cerebral cortex of adult rats. J Neural Transm 124, 121–131 (2017). https://doi.org/10.1007/s00702-016-1623-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-016-1623-5

Keywords

Navigation