Skip to main content

Advertisement

Log in

Antioxidant Enzyme Activities Following Acute or Chronic Methylphenidate Treatment in Young Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Methylphenidate (MPH) is psychostimulants used to treat Attention-Deficit/Hyperactivity Disorder and can lead to a long-lasting neurochemical and behavioral adaptations in experimental animals. In the present study, the cerebral antioxidant enzymatic system, superoxide dismutase (SOD) and catalase (CAT) was evaluated at in different age following MPH (1, 2 or 10 mg/kg MPH, i.p.) treatment in young rats. In the acute treatment the SOD activity decreased in the cerebral prefrontal cortex with opposite effect in the cerebral cortex; and the CAT activity decreased in hippocampus. In the chronic treatment the SOD activity increased in the hippocampus and cerebral cortex and decreased in the striatum. The observed changes on the enzyme activities in rat brain were dependent on the structure brain region and duration of treatment with MPH. Probably, the activity of enzymes was not be enough to prevent MPH-induced oxidative damage in specific regions from brain, such as observed for us in another recent study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Faraone SV, Sergeant J, Gillberg C, Biederman J (2003) The worldwide prevalence of ADHD: is it an American condition? World Psychiatry 2:104–113

    PubMed  Google Scholar 

  2. Biederman J (2003) Pharmacotherapy for attention-deficit/hyperactivity disorder (ADHD) decrease the risk for substance abuse: findings from a longitudinal follow-up youths with and without ADHD. J Chem Psychiatry 64(suppl 11):3–8

    CAS  Google Scholar 

  3. Swanson JM, Sergeant JA, Taylor E, Sonega-Barke EJ, Jensen PS, Cantwell DP (1998) Attention-deficit hyperactivity disorder and hyperkinetic disorder. Lancet 351:429–433

    Article  PubMed  CAS  Google Scholar 

  4. Bush G, Frazier JA, Rauch SL, Sudman LT, Whalen PJ, Jenike MA et al (1999) Anterior cingulated cortex dysfunction in attention-deficit/hyperactivity disorder revelated by fMRI and the counting stroop . Biol Psychiatry 45:1542–1552

    Article  PubMed  CAS  Google Scholar 

  5. Castellanos FX, Giedd JN, Berquin PC, Walter JM, Sharp W, Tran T, Vaituzis AC, Bastain T, Blumenthal J, Nelson J, Zidenbos A, Evans AC, Rapoport JL (2001) Quantitative brain magnetic resonance imaging in girls with attention-deficit hyperactivity disorder. Arch Gen Psychiatry 58:289–295

    Article  PubMed  CAS  Google Scholar 

  6. Middleton c, Their P (2000) Basal ganglio and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 31:236–250

    Article  PubMed  CAS  Google Scholar 

  7. Ernest M, Zametkinaj, Matochik JA, Pascualvaca D, Jons PH, Cohen H (1999) High midbrain [18F]DOPA accumulation in children with attention deficit hyperactivity disorder. Am J Psychiatry 156:1209–1215

    Google Scholar 

  8. Girus B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    Article  Google Scholar 

  9. Goldman-Rakic PS, Muly EC, Williams GV (2000) D(1) receptors in prefrontal cells circuits. Brain Res Brain Res Rev 31:295–301

    Article  PubMed  CAS  Google Scholar 

  10. Arnstem AFT, Li BM (2005) Neurobiology executive functions: catecholamine influences on prefrontal cortical function. Biol Psychiatry 57:1377–1384

    Article  Google Scholar 

  11. Han DD, Gu HH (2006) Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol 6:6

    Article  PubMed  Google Scholar 

  12. Coyle JT (2000) Psychotropic drug use in very young children. JAMA 283:306–311

    Article  Google Scholar 

  13. Benes FM (1998) Brains development VII human brain growth spans decades. Am J Psychiatry 155:1489

    PubMed  CAS  Google Scholar 

  14. Martins MR, Reinke A, Petronilho FC, Gomes KM, Dal-Pizzol F, Quevedo J (2006) Methylphenidate treatment induces oxidative stress in early developmental rat brain. Brain Res 1078:189–197

    Article  PubMed  CAS  Google Scholar 

  15. Fagundes AO, Rezin GT, Zanette F, Grandi E, Assis L, Dal-Pizzol F, Quevedo J, Streck E (2007) Chronic administration of methylphenidate actives mitochondrial respiratory chain in brain of young rats. Int J Dev Neurosci 25:47–51

    Article  PubMed  CAS  Google Scholar 

  16. Bannister JV, Claberese L (1987) Assays for superoxide dismutase. Methods Biochem Anal 32:279–231

    Article  PubMed  CAS  Google Scholar 

  17. Dal-Pizzol F, Klamt F, Bernard EA, Benfato MS, Moreira JCF (2001) Retinol supplementation induces oxidative stress and modulates antioxidant enzyme activities in rat sertoli cells. Free Radic Res 34:395–404

    Article  PubMed  CAS  Google Scholar 

  18. Lowry OH, Rosebrough AL, Randal RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  19. Davies KJ (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31

    PubMed  CAS  Google Scholar 

  20. Floyd RA (1999) Antioxidants, oxidative stress and degenerative neurological disorders. Proc Soc Exp Biol Med 222(3):236–245

    Article  PubMed  CAS  Google Scholar 

  21. Sandoval V, Riddle EL, Hanson GR, Fleckenstein AE (2002) Methylphenidate redistributes vesicular monoamine transporter-2: role of dopamine receptors. J Neurosci 22:8705–8710

    PubMed  CAS  Google Scholar 

  22. Williams SM, Goldman-Rakic PS (1998) Widespread origin of the primate mesofrontal dopamine system. Cereb Cortex 8:321–245

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Quevedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomes, K.M., Petronilho, F.C., Mantovani, M. et al. Antioxidant Enzyme Activities Following Acute or Chronic Methylphenidate Treatment in Young Rats. Neurochem Res 33, 1024–1027 (2008). https://doi.org/10.1007/s11064-007-9544-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9544-1

Keywords

Navigation